results in amino alcohols,5 which are suitable intermediates for
the synthesis of natural products,6 carbocyclic nucleosides,7 and
other important biologically active molecules.8 The C-O bond
can be cleaved through metal-mediated reactions in the presence
of nucleophiles9 or electrophiles,10 yielding 1,4-benzodiaz-
epines11 and other useful synthetic intermediates. The N-acyl
group can also be cleaved under relatively mild conditions
(where R ) alkyl or aryl).12 While extensive chemistry has been
developed that capitalizes on the strained nature of 1, modifica-
tions of the olefin have been mainly limited to epoxidation,6c
dihydroxylation,13 and oxidative cleavage.14
Reactions of Nitroso Hetero-Diels-Alder
Cycloadducts with Azides: Stereoselective
Formation of Triazolines and Aziridines
Brian S. Bodnar† and Marvin J. Miller*,†,‡
Department of Chemistry and Biochemistry, UniVersity of Notre
Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana
46556, and Leibniz-Institute for Natural Product Research and
Infection Biology, Hans Kno¨ll Institute, Beutenbergstrasse 11a,
07745 Jena, Germany
ReceiVed February 2, 2007
In an effort to expand upon the versatility of 1, we were
interested in selective functionalization of the olefin to produce
new structural features. Encouraged by a recent report highlight-
ing the addition of nitrile oxides to 1,15 we wish to report on
studies regarding the reactivity of 1 with azides to form
triazolines and their subsequent transformation to aziridines.
Intermolecular [3 + 2] cycloaddition reactions of azides to
strained bicyclic alkenes are well-documented in the literature.16
Examples include additions to norbornene, 2-azabicyclo[2.2.1]-
hept-5-en-3-one (ABH) 2 to afford 2′-3′-epimino carbocyclic
The addition of azides to acylnitroso hetero-Diels-Alder
cycloadducts derived from cyclopentadiene affords exo-
triazolines in excellent yield. The reaction is greatly affected
by the level of alkene strain, while sterically demanding
azides do not hinder the reaction. Conversion of the
triazolines to aziridines is also described.
(5) (a) Shireman, B. T.; Miller, M. J. Tetrahedron Lett. 2000, 41, 9537-
9540. (b) Keck, G. E.; Wager, T. T.; McHardy, S. F. Tetrahedron 1999,
55, 11755-11772. (c) Keck, G. E.; McHardy, S. F.; Wager, T. T.
Tetrahedron Lett. 1995, 36, 7419-7422.
(6) (a) Li, F.; Warshakoon, N. C.; Miller, M. J. J. Org. Chem. 2004, 69,
8836-8841. (b) Malpass, J. R.; Hemmings, D. A.; Wallis, A. L.; Fletcher,
S. R.; Patel, S. J. Chem. Soc., Perkin Trans. 1 2001, 1044-1050. (c) Justice,
D. E.; Malpass, J. R. Tetrahedron 1996, 52, 11977-11994.
(7) (a) Li, F.; Brogan, J. B.; Gage, J. L.; Zhang, D.; Miller, M. J. J. Org.
Chem. 2004, 69, 4538-4540. (b) Kim, K.-H.; Miller, M. J. Tetrahedron
Lett. 2003, 44, 4571-4573. (c) Li, H.; Miller, M. J. J. Org. Chem. 1999,
64, 9289-9293.
The nitroso hetero-Diels-Alder (HDA) reaction provides a
useful method for incorporating 1,4-aminoalcohol moieties into
a carbon framework in a diastereoselective fashion.1 Stereose-
lective nitroso HDA reactions2 have also provided access to
new classes of synthetically useful molecules. While a variety
of nitroso species have been investigated for use in HDA
reactions,3 our research has largely focused on acyl- and
carboxylnitroso species due to their ease of synthesis and high
reactivity. Hydroxamic acids and N-hydroxy carbamates, when
oxidized in the presence of cyclic dienes, afford hetero-Diels-
Alder adducts 1.1a,4 Reduction of the N-O bond of 1
(8) (a) Jiang, M. X.-W.; Warshakoon, N. C.; Miller, M. J. J. Org. Chem.
2005, 70, 2824-2827. (b) Lee, W.; Miller, M. J. J. Org. Chem. 2004, 69,
4516-4519.
(9) (a) Surman, M. D.; Mulvihill, M. J.; Miller, M. J. J. Org. Chem.
2002, 67, 4115-4121. (b) Surman, M. D.; Mulvihill, M. J.; Miller, M. J.
Tetrahedron Lett. 2002, 43, 1131-1134. (c) Surman, M. D.; Miller, M. J.
J. Org. Chem. 2001, 66, 2466-2469. (d) Mulvihill, M. J.; Surman, M. D.;
Miller, M. J. J. Org. Chem. 1998, 63, 4874-4875.
(10) Lee, W.; Kim, K.-H.; Surman, M. D.; Miller, M. J. J. Org. Chem.
2003, 68, 139-149.
(11) Surman, M. D.; Mulvihill, M. J.; Miller, M. J. Org. Lett. 2002, 4,
139-141.
(12) Keck, G. E.; Webb, R. R.; Yates, J. B. Tetrahedron 1981, 37, 4007-
4016.
† University of Notre Dame.
‡ Hans Kno¨ll Institute.
(13) Keck, G. E.; Romer, D. R. J. Org. Chem. 1993, 58, 6083-6089.
(14) (a) Shireman, B. T.; Miller, M. J. J. Org. Chem. 2001, 66, 4809-
4813. (b) Nora, G. P.; Miller, M. J.; Moellmann, U. Bioorg. Med. Chem.
Lett. 2006, 16, 3966-3970.
(15) Quadrelli, P.; Mella, M.; Paganoni, P.; Caramella, P. Eur. J. Org.
Chem. 2000, 14, 2613-2620.
(16) (a) Braese, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem.,
Int. Ed. 2005, 44, 5188-5240. (b) Shea, K. J.; Kim, J. S. J. Am. Chem.
Soc. 1992, 114, 4846-4855. (c) Becker, K. B.; Hohermuth, M. K. HelV.
Chim. Acta 1979, 62, 2025-2036. (d) Taniguchi, H.; Ikeda, T.; Imoto, E.
Bull. Chem. Soc. Jpn. 1978, 51, 1859-1865. (e) Scheiner, P. Tetrahedron
1968, 24, 2757-2766. (f) Scheiner, P. J. Am. Chem. Soc. 1968, 90, 988-
992. (g) Rolf, H. Angew. Chem., Int. Ed. Engl. 1963, 2, 565-598. (h)
Tarabara, I. N.; Kas’yan, A. O.; Yarovoi, M. Y.; Shishkina, S. V.; Shishkin,
O. V.; Kas’yan, L. I. Russ. J. Org. Chem. 2004, 40, 992-998.
(1) (a) Kirby, G. W. Chem. Soc. ReV. 1977, 6, 1-24. (b) Corrie, J. E.
T.; Kirby, G. W.; Mackinnon, J. W. M. J. Chem. Soc., Perkin Trans. 1985,
1, 883-886. (c) Leach, A. G.; Houk, K. N. J. Org. Chem. 2001, 66, 5192-
5200.
(2) (a) Yamamoto, Y.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126,
4128-4129. (b) Kirby, G. W.; Nazeer, M. Tetrahedron Lett. 1988, 29,
6173-6174. (c) Ritter, A. R.; Miller, M. J. J. Org. Chem. 1994, 59, 4602-
4611.
(3) (a) Miller, C. A.; Batey, R. A. Org. Lett. 2004, 6, 699-702. (b)
Calvet, G.; Dussaussois, M.; Blanchard, N.; Kouklovsky, C. Org. Lett. 2004,
6, 2449-2451. (c) Ware, R. W., Jr.; Day, C. S.; King, S. B. J. Org. Chem.
2002, 67, 6174-6180. (d) Ware, R. W., Jr.; King, S. B. J. Org. Chem.
2000, 65, 8725-8729.
(4) Vogt, P. F.; Miller, M. J. Tetrahedron 1998, 54, 1317-1348.
10.1021/jo0701987 CCC: $37.00 © 2007 American Chemical Society
Published on Web 04/13/2007
J. Org. Chem. 2007, 72, 3929-3932
3929