ORGANIC
LETTERS
2006
Vol. 8, No. 1
67-69
Rhodium-Catalyzed Addition of Alkynes
to Activated Ketones and Aldehydes
Pawan K. Dhondi and John D. Chisholm*
Department of Chemistry, 1-014 Center for Science and Technology,
Syracuse UniVersity, Syracuse, New York 13244
Received October 18, 2005
ABSTRACT
The rhodium-catalyzed addition of alkynes to 1,2-diketones, 1,2-ketoesters, and aldehydes provides a method for the synthesis of tertiary
alkynyl alcohols under mild conditions. The reaction tolerates many functional groups (such as carboxylic acids) that are incompatible with
other methods. The alkyne addition reaction proceeds best using bulky phosphine ligands such as 2-(di-tert-butylphosphino)biphenyl. This
method fills a void in the more common zinc-catalyzed processes, which give poor yields with enolizable 1,2-dicarbonyl substrates.
Great strides have been made in the development of catalytic
methods for the addition of alkynes to aldehydes, ketones,
and imines.1,2 Such transformations have attracted consider-
able interest due to the versatility of the alkyne addition
products which are useful intermediates in the synthesis of
complex molecules.3 Although the development of catalytic
methods for the addition of alkynes to aldehydes and ketones
has received significant attention, the catalytic addition of
alkynes to 1,2-dicarbonyl compounds has been explored in
only a cursory fashion. Although catalytic zinc conditions
are compatible with 1,2-dicarbonyls, they are limited to non-
enolizable systems, with enolizable 1,2-dicarbonyls providing
only low yields.4
Rhodium acetylides provide a useful solution to this limita-
tion of catalytic zinc chemistry. Use of catalytic amounts of
Rh(acac)(CO)2 in the presence of phosphine ligands has been
shown to form acetylides with nucleophilic properties.5 These
rhodium acetylides act as selective nucleophiles under mild
conditions. Indeed, alkyne addition reactions catalyzed by
rhodium complexes tolerate functional groups (such as
unprotected alcohols and carboxylic acids) that are not
tolerated by many other metal-catalyzed alkyne addition
reactions.
(1) For recent reviews, see: (a) Cozzi, P. G.; Hilgraf, R.; Zimmermann,
N. Eur. J. Org. Chem. 2004, 4095. (b) Wei, C.; Li, Z.; Li, C.-J. Synlett
2004, 1472. (c) Pu, L. Tetrahedron 2003, 59, 9873. (d) Frantz, D. E.; Fa¨ssler,
R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373.
(2) For some selected examples, see: (a) Frantz, D. E.; Fa¨ssler, R.;
Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806. (b) Anand, N. K.;
Carreira, E. M. J. Am. Chem. Soc. 2001, 123, 9687. (c) Fa¨ssler, R.;
Tomooka, C. S.; Frantz, D. E.; Carreira, E. M. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5843. (d) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett.
2002, 4, 4143. (e) Gao, G.; Xie, R.-G.; Pu, L. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5417. (f) Liu, L.; Wang, R.; Kang, Y.-F.; Chen, C.; Xu, Z.-Q.;
Zhou, Y.-F.; Ni, M.; Cai, H.-Q.; Gong, M.-Z. J. Org. Chem. 2005, 70,
1084. (g) Lu, G.; Li, X.; Jia, X.; Chan, W. L.; Chan, A. S. C. Angew. Chem.,
Int. Ed. 2003, 42, 5057. (h) Jiang, B.; Chen, Z.; Xiong, W. Chem. Commun.
2002, 1524. (i) Tzalis, D.; Knochel, P. Angew. Chem. Int. Ed. 1999, 38,
1463. (j) Cozzi, P. G.; Alesi, S. Chem. Commun. 2004, 2448. (k) Wei, C.;
Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584. (l) Koradin, C.; Gommermann,
N.; Polborn, K.; Knochel, P. Chem.-Eur. J. 2003, 9, 2797. (m) Takita, R.;
Fukuta, Y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. Org. Lett. 2005, 7, 1363
and references therein.
(3) (a) Fettes, A.; Carreira, E. M. J. Org. Chem. 2003, 68, 9274. (b)
Reber, S.; Kno¨pfel, T. F.; Carreira, E. M. Tetrahedron 2003, 59, 6813. (c)
Maezaki, N.; Tominaga, H.; Kojima, N.; Yanai, M.; Urabe, D.; Tanaka, T.
Chem. Commun. 2004, 406. (d) Crimmins, M. T.; She, J. J. Am. Chem.
Soc. 2004, 126, 12790.
(4) Jiang, B.; Chen, Z.; Tang, X. Org. Lett. 2002, 4, 3451.
(5) Lerum, R. V.; Chisholm, J. D. Tetrahedron Lett. 2004, 45, 6591.
10.1021/ol0525260 CCC: $33.50
© 2006 American Chemical Society
Published on Web 12/08/2005