Angewandte Chemie International Edition
10.1002/anie.202008439
RESEARCH ARTICLE
times of paramagnetic complexes enable reduction of the
repetition delays and acquisition times, thereby significantly
reducing the experiment times or enabling the acquisition of
more data in a similar time (Table S1). In addition to reduced
signal overlap and increased sensitivity, structural information
can be observed by paramagnetic NMR spectroscopy that would
not be observable in the diamagnetic analogue; in the COSY
Minameyer, S. Gsänger, B. Meyer, T. Drewello, D. M. Guldi, M. von
Delius, J. Am. Chem. Soc. 2018, 140, 13413-13420.
[
4]
a) M. Hardy, N. Struch, J. J. Holstein, G. Schnakenburg, N. Wagner, M.
Engeser, J. Beck, G. H. Clever, A. Lützen, Angew. Chem. Int. Ed. 2020,
59, 3195-3200; b) A. J. McConnell, C. M. Aitchison, A. B. Grommet, J.
R. Nitschke, J. Am. Chem. Soc. 2017, 139, 6294-6297; c) R. A. S.
Vasdev, J. A. Findlay, A. L. Garden, J. D. Crowley, Chem. Commun.
2019, 55, 7506-7509; d) A. J. Metherell, W. Cullen, N. H. Williams, M. D.
spectra of the CoII mer
mononuclear complexes,
Ward, Chem. Eur. J. 2018, 24, 1554-1560; e) S. M. Jansze, K. Severin,
J. Am. Chem. Soc. 2019, 141, 815-819.
relaxation-allowed through-space (NOE) cross-correlation peaks
and exchange (EXSY) cross-peaks were observed in addition to
the expected through-bond (COSY) cross-peaks. Furthermore,
the sensitivity of the exchange NOESY technique enabled the
identification of additional species present at equilibrium that
[
[
5]
6]
a) J. Zhong, L. Zhang, D. P. August, G. F. S. Whitehead, D. A. Leigh, J.
Am. Chem. Soc. 2019, 141, 14249-14256; b) Y. Inomata, T. Sawada, M.
Fujita, Chem 2020, 6, 294-303; c) H.-N. Zhang, W.-X. Gao, Y.-J. Lin,
G.-X. Jin, J. Am. Chem. Soc. 2019, 141, 16057-16063.
a) C. L. I. Bertini, Coord. Chem. Rev. 1996, 150, 1-28; b) A. J. Pell, G.
Pintacuda, C. P. Grey, Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111,
1
were not visible in the H NMR spectra due to broad linewidths
and/or their low concentration.
1-271; c) C. L. I. Bertini, Coord. Chem. Rev. 1996, 150, 185-220; d) C.
While solution characterisation of paramagnetic complexes
and cages was previously typically limited to a 1H NMR
spectrum only, we demonstrate that in-depth structural analysis
comparable to that for diamagnetic compounds is now possible
using the paramagnetic NMR toolbox. We are now extending the
use of this toolbox to the characterisation of more complex as
well as mixtures of supramolecular architectures.
L. I. Bertini, Coord. Chem. Rev. 1996, 150, 163-184; e) M. P. Crockett,
H. Zhang, C. M. Thomas, J. A. Byers, Chem. Commun. 2019, 55,
14426-14429.
[
[
7]
8]
a) B.-B. Pan, F. Yang, Y. Ye, Q. Wu, C. Li, T. Huber, X.-C. Su, Chem.
Commun. 2016, 52, 10237-10240; b) A. Bahramzadeh, T. Huber, G.
Otting, Biochem. 2019, 58, 3243-3250.
a) R. W. Hogue, C. P. Lepper, G. B. Jameson, S. Brooker, Chem.
Commun. 2018, 54, 172-175; b) S. Rodríguez-Jiménez, M. Yang, I.
Stewart, A. L. Garden, S. Brooker, J. Am. Chem. Soc. 2017, 139,
18392-18396; c) D. F. Evans, J. Chem. Soc. 1959, 2003-2005; d) A.
Ferguson, M. A. Squire, D. Siretanu, D. Mitcov, C. Mathoniere, R.
Clerac, P. E. Kruger, Chem. Commun. 2013, 49, 1597-1599; e) R. A.
Bilbeisi, S. Zarra, H. L. C. Feltham, G. N. L. Jameson, J. K. Clegg, S.
Brooker, J. R. Nitschke, Chem. Eur. J. 2013, 19, 8058-8062; f) A. J.
McConnell, Supramol. Chem. 2018, 30, 858-868; g) A. A. Pavlov, G. L.
Denisov, M. A. Kiskin, Y. V. Nelyubina, V. V. Novikov, Inorg. Chem.
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG, project
number 413396832 (M.L.), project number 429518153 (T.P.)
and CRC677) for financial support and we also thank Prof. Dr
Thisbe K. Lindhorst and Prof. Dr Rainer Herges for bridging
financial support for M.L. We thank the spectroscopy department
and Dr Claus Bier for NMR and mass spectral data collection.
We thank Jan-Christian Carstensen, Felix Piontek, André
Petersen and Tjorge Neumann for preliminary studies on the
complexes and the synthesis of ligand precursors.
2017, 56, 14759-14762.
[
[
9]
a) H. S. Chow, E. C. Constable, C. E. Housecroft, K. J. Kulicke, Y. Tao,
Dalton Trans. 2005, 236-237; b) M. Kruck, D. C. Sauer, M. Enders, H.
Wadepohl, L. H. Gade, Dalton Trans. 2011, 40, 10406-10415.
10] a) C. Piguet, G. Bernardinelli, B. Bocquet, A. Quattropani, A. F.
Williams, J. Am. Chem. Soc. 1992, 114, 7440-7451; b) H. Amouri, L.
Mimassi, M. N. Rager, B. E. Mann, C. Guyard-Duhayon, L. Raehm,
Angew. Chem. Int. Ed. 2005, 44, 4543-4546; c) S. Turega, M.
Whitehead, B. R. Hall, A. J. H. M. Meijer, C. A. Hunter, M. D. Ward,
Inorg. Chem. 2013, 52, 1122-1132; d) I. S. Tidmarsh, B. F. Taylor, M. J.
Hardie, L. Russo, W. Clegg, M. D. Ward, New J. Chem. 2009, 33, 366-
Keywords: NMR spectroscopy • paramagnetic complex • metal-
organic cage • supramolecular chemistry • spin-crossover
375; e) M. J. Burke, G. S. Nichol, P. J. Lusby, J. Am. Chem. Soc. 2016,
‡
CCDC 1987819 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from the
1
38, 9308-9315.
[
[
11] a) W. C. Isley, S. Zarra, R. K. Carlson, R. A. Bilbeisi, T. K. Ronson, J. R.
Cambridge
http://www.ccdc.cam.ac.uk/data_request/cif.
It is likely that the cross-peaks attributed to through-bond correlations
also have contribution from through-space coupling due to
Crystallographic
Data
Centre
via
Nitschke, L. Gagliardi, C. J. Cramer, Phys. Chem. Chem. Phys. 2014,
16, 10620-10628; b) T. L. J. Huang, D. G. Brewer, Can. J. Chem. 1981,
59, 1689-1700; c) M. L. Wicholas, R. S. Drago, J. Am. Chem. Soc.
1968, 90, 6946-6950.
§
a
cross-correlation.[16]
12] a) S. Cai, C. Seu, Z. Kovacs, A. D. Sherry, Y. Chen, J. Am. Chem. Soc.
006, 128, 13474-13478; b) F. A. A. Mulder, L. Tenori, C. Luchinat,
Angew. Chem. Int. Ed. 2019, 58, 15283-15286.
2
[
[
1]
a) G. Wang, Z.-T. Zhang, B. Jiang, X. Zhang, C. Li, M. Liu, Anal.
Bioanal. Chem. 2014, 406, 2279-2288; b) W.-M. Liu, M. Overhand, M.
Ubbink, Coord. Chem. Rev. 2014, 273-274, 2-12; c) X.-C. Su, J.-L.
Chen, Acc. Chem. Res. 2019, 52, 1675-1686.
[13] S. Denis-Quanquin, F. Riobé, M.-A. Delsuc, O. Maury, N. Giraud,
Chem. Eur. J. 2016, 22, 18123-18131.
[14] a) I. S. Jahro, D. Onggo, Ismunandar, S. I. Rahayu, M. C. Muñoz, A. B.
Gaspar, M. Seredyuk, P. Gütlich, J. A. Real, Inorg. Chim. Acta 2008,
361, 4047-4054; b) D. Onggo, J. M. Hook, A. D. Rae, H. A. Goodwin,
Inorg. Chim. Acta 1990, 173, 19-30; c) C. Harris, S. Kokot, H. Patil, E.
Sinn, H. Wong, Aust. J. Chem. 1972, 25, 1631-1643.
2]
3]
a) A. Pastor, E. Martínez-Viviente, Coord. Chem. Rev. 2008, 252,
2314-2345; b) L. Avram, A. D. Wishard, B. C. Gibb, A. Bar-Shir, Angew.
Chem. Int. Ed. 2017, 56, 15314-15318; c) L. Avram, M. A. Iron, A. Bar-
Shir, Chem. Sci. 2016, 7, 6905-6909; d) Y. Cohen, S. Slovak, Org.
Chem. Front. 2019, 6, 1705-1718.
[15] R. Wang, H. Fan, W. Zhao, F. Li, Org. Lett. 2016, 18, 3558-3561.
[16] a) I. Bertini, C. Luchinat, D. Tarchi, Chem. Phys. Lett. 1993, 203, 445-
449; b) I. Bertini, M. Piccioli, D. Tarchi, C. Luchinat, Concepts Magn.
Reson. 1994, 6, 307-335; c) S. Wimperis, G. Bodenhausen, Mol. Phys.
1989, 66, 897-919; d) S. Wimperis, G. Bodenhausen, Chem. Phys. Lett.
1987, 140, 41-45.
[
a) M. Dumartin, M. C. Lipke, J. F. Stoddart, J. Am. Chem. Soc. 2019,
141, 18308-18317; b) H. Li, H. Zhang, A. D. Lammer, M. Wang, X. Li, V.
M. Lynch, J. L. Sessler, Nat. Chem. 2015, 7, 1003-1008; c) T.
Bunchuay, A. Docker, A. J. Martinez-Martinez, P. D. Beer, Angew.
Chem. Int. Ed. 2019, 58, 13823-13827; d) N. Pairault, H. Zhu, D.
Jansen, A. Huber, C. G. Daniliuc, S. Grimme, J. Niemeyer, Angew.
Chem. Int. Ed. 2020, 59, 5102-5107; e) Y. Xu, R. Kaur, B. Wang, M. B.
[17] C. P. Landee, M. M. Turnbull, J. Coord. Chem. 2014, 67, 375-439.
7
This article is protected by copyright. All rights reserved.