Inorganic Chemistry
Article
(6) Liu, L.; Ding, J.; Huang, C.; Li, M.; Hou, H.; Fan, Y. Polynuclear
Cd II Polymers: Crystal Structures, Topologies, and the Photo-
degradation for Organic Dye Contaminants. Cryst. Growth Des. 2014,
14, 3035−3043.
(7) Costa, M. Toxicity and Carcinogenicity of Cr(VI) in Animal
Models and Humans. Crit. Rev. Toxicol. 1997, 27, 431−442.
(8) Bhowmik, K.; Mukherjee, A.; Mishra, M. K.; De, G. Stable Ni
Nanoparticle−Reduced Graphene Oxide Composites for the
Reduction of Highly Toxic Aqueous Cr(VI) at Room Temperature.
Langmuir 2014, 30, 3209−3216.
(9) Miretzky, P.; Cirelli, A. F. Cr(VI) and Cr(III) Removal from
Aqueous Solution by Raw and Modified Lignocellulosic Materials: A
Review. J. Hazard. Mater. 2010, 180, 1−19.
photocatalysis. In addition, the obtained MOF shows better
photocatalytic performance than that of the pristine organic
ligand, indicating that the introduction of visible-light-harvest-
ing ligands into MOFs is a promising approach for fabricating
MOF-based photocatalysis with excellent performance in
environment remediation and sustainable energy.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(10) Rauf, A.; Sher Shah, M. S. A.; Choi, G. H.; Humayoun, U. B.;
Yoon, D. H.; Bae, J. W.; Park, J.; Kim, W.-J.; Yoo, P. J. Facile Synthesis
of Hierarchically Structured Bi2S3/Bi2WO6 Photocatalysts for Highly
Efficient Reduction of Cr(VI). ACS Sustainable Chem. Eng. 2015, 3,
2847−2855.
TGA curve (Figures S1), PXRD patterns (Figures S2,
S5, and S9), UV−vis spectrum (Figure S3), XPS results
(Figures S6−S7), and solid-state PL spectra (Figure
(11) Liu, X.; Pan, L.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Microwave-
Assisted Synthesis of CdS−reduced Graphene Oxide Composites for
Photocatalytic Reduction of Cr(vi). Chem. Commun. 2011, 47,
11984−11986.
(12) Yu, J.; Zhuang, S.; Xu, X.; Zhu, W.; Feng, B.; Hu, J.
Photogenerated Electron Reservoir in Hetero-P−n CuO−ZnO
Nanocomposite Device for Visible-Light-Driven Photocatalytic
Reduction of Aqueous Cr(vi). J. Mater. Chem. A 2015, 3, 1199−1207.
(13) Zhang, Y. C.; Li, J.; Zhang, M.; Dionysiou, D. D. Size-Tunable
Hydrothermal Synthesis of SnS2 Nanocrystals with High Performance
in Visible Light-Driven Photocatalytic Reduction of Aqueous Cr(VI).
Environ. Sci. Technol. 2011, 45, 9324−9331.
(14) Lubitz, W.; Tumas, W. Hydrogen: An Overview. Chem. Rev.
2007, 107, 3900−3903.
(15) Li, Z.; Xiao, J.-D.; Jiang, H.-L. Encapsulating a Co(II)
Molecular Photocatalyst in Metal−Organic Framework for Visible-
Light-Driven H2 Production: Boosting Catalytic Efficiency via Spatial
Charge Separation. ACS Catal. 2016, 6, 5359−5365.
(16) Qin, J.-S.; Du, D.-Y.; Guan, W.; Bo, X.-J.; Li, Y.-F.; Guo, L.-P.;
Su, Z.-M.; Wang, Y.-Y.; Lan, Y.-Q.; Zhou, H.-C. Ultrastable
Polymolybdate-Based Metal−Organic Frameworks as Highly Active
Electrocatalysts for Hydrogen Generation from Water. J. Am. Chem.
Soc. 2015, 137, 7169−7177.
(17) Huang, Z.-F.; Song, J.; Li, K.; Tahir, M.; Wang, Y.-T.; Pan, L.;
Wang, L.; Zhang, X.; Zou, J.-J. Hollow Cobalt-Based Bimetallic
Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and
Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138,
1359−1365.
Accession Codes
CCDC 1827405 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors gratefully acknowledge the support from the
National Natural Science Foundation of China (Nos.
21601160, 21571158 and 21471134) and the Doctoral
Scientific Research Foundation of Zhengzhou University of
Light Industry (No.2015BSJJ042).
(18) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal−
Organic Frameworks. Chem. Rev. 2012, 112, 673−674.
(19) Zhang, H.; Liu, G.; Shi, L.; Liu, H.; Wang, T.; Ye, J.
Engineering Coordination Polymers for Photocatalysis. Nano Energy
2016, 22, 149−168.
(20) Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Wu,
Z.; Jiang, L.; Li, H. Facile Synthesis of Amino-Functionalized
Titanium Metal-Organic Frameworks and Their Superior Visible-
Light Photocatalytic Activity for Cr(VI) Reduction. J. Hazard. Mater.
2015, 286, 187−194.
(21) Liang, R.; Shen, L.; Jing, F.; Wu, W.; Qin, N.; Lin, R.; Wu, L.
NH2 -Mediated Indium Metal−organic Framework as a Novel
Visible-Light-Driven Photocatalyst for Reduction of the Aqueous
Cr(VI). Appl. Catal., B 2015, 162, 245−251.
(22) Yang, C.; You, X.; Cheng, J.; Zheng, H.; Chen, Y. A Novel
Visible-Light-Driven In-Based MOF/graphene Oxide Composite
Photocatalyst with Enhanced Photocatalytic Activity toward the
Degradation of Amoxicillin. Appl. Catal., B 2017, 200, 673−680.
(23) Yan, B.; Zhang, L.; Tang, Z.; Al-Mamun, M.; Zhao, H.; Su, X.
Palladium-Decorated Hierarchical Titania Constructed from the
Metal-Organic Frameworks NH2 -MIL-125(Ti) as a Robust Photo-
catalyst for Hydrogen Evolution. Appl. Catal., B 2017, 218, 743−750.
REFERENCES
■
(1) Yuan, S.; Qin, J.-S.; Xu, H.-Q.; Su, J.; Rossi, D.; Chen, Y.; Zhang,
L.; Lollar, C.; Wang, Q.; Jiang, H.-L.; Son, D. H.; Xu, H.; Huang, Z.;
Zou, X.; Zhou, H.-C. [Ti8Zr2O12(COO)16] Cluster: An Ideal
Inorganic Building Unit for Photoactive Metal−Organic Frameworks.
ACS Cent. Sci. 2018, 4, 105−111.
(2) Park, J.; Feng, D.; Yuan, S.; Zhou, H.-C. Photochromic Metal-
Organic Frameworks: Reversible Control of Singlet Oxygen
Generation. Angew. Chem., Int. Ed. 2015, 54, 430−435.
(3) Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-
H.; Jiang, H.-L. Visible-Light Photoreduction of CO2 in a Metal−
Organic Framework: Boosting Electron−Hole Separation via Electron
Trap States. J. Am. Chem. Soc. 2015, 137, 13440−13443.
(4) Shao, Z.; Huang, C.; Han, X.; Wang, H.; Li, A.; Han, Y.; Li, K.;
Hou, H.; Fan, Y. The Effect of Metal Ions on Photocatalytic
Performance Based on an Isostructural Framework. Dalton. Trans.
2015, 44, 12832−12838.
(5) Liu, L.; Wu, D.; Zhao, B.; Han, X.; Wu, J.; Hou, H.; Fan, Y.
Copper(ii) Coordination Polymers: Tunable Structures and a
Different Activation Effect of Hydrogen Peroxide for the Degradation
of Methyl Orange under Visible Light Irradiation. Dalton. Trans.
2015, 44, 1406−1411.
F
Inorg. Chem. XXXX, XXX, XXX−XXX