ChemComm
Page 4 of 5
favour of the free-radical mechanism while others anionic one.
reactions of Gilch polymerization for an extremely twisted
Therefore, we added free-radical scavenger 2,2,6,6- 40 biphenyl monomer should be free-radical and anionic as well.
1
tetramethylpiperidine-N-oxyl (TEMPO) during the Gilch
polymerization of BTBB to corroborate the free-radical pathway.
As shown in ESI† Table S1, the molecular weight and yield of
PBPV-2 (Mn=15,000 g/mol, yield=42%) decrease drastically
In conclusion, we successfully obtain the direct in-situ H-
NMR evidence of the twisted biphenyl-based p-biquinodimethane
5
species at -50 ℃. To the best of our knowledge, it is the first
article to prove the feasibilities to form coplanar p-
when 0.5 equivalent of TEMPO was added. Furthermore, when a 45 biquinodimethane BTBQ. It proves that p-biquinodimethane
large excess of TEMPO (1.5 equivalents) was added, only oil-like
oligomer with molecular weight less than 1,000 g/mole can be
obtained. Their SEC chromatograms are shown in ESI† Fig. S1.
species can be formed regardless the aromaticity and steric
hindrance. It further confirms the validity of the mechanism of
Gilch polymerization, not only for phenyl-type monomers but
also for biphenyl-type monomers even with large steric hindrance.
Moreover, from the identification of aldehyde, t-butoxyl, and
benzyl chain ends combined with TEMPO-equivalent dependent
molecular weight, it is concluded that the Gilch polymerization of
twisted BTBB monomer proceeds simultaneously by free-radical
and anionic chain growth.
1
0
50
55
Notes and references
Department of Materials Science and Engineering, National Taiwan
University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei
1
60 Fax: + 886 2 27376544 Tel: + 886 2 27373141 #6526
Electronic Supplementary Information (ESI) available: Experimental
1
Fig. 3 H-NMR spectrum of PBPV with 1.5 equivalent of TEMPO in
†
7
DMF-d .
details, synthesis, polymerization, spectroscospic characterization,
solubility and thermal properties. See DOI: 10.1039/b000000x/
1
Fig. 3 shows the H-NMR spectrum of this oil-like oligomer.
A peak at δ=10.18 ppm, corresponding to aldehyde group, was
observed. The radical chain end generated by Gilch
polymerization can react with TEMPO as shown in Fig. 3. The
formed nitroxide is not stable and will lead to the formation of
aldehyde chain end. The TEMPO equivalent-dependent
molecular weights and the formation of aldehyde chain end
provide us the strong evidence of free-radical chain growth in
Gilch polymerization.
1
H. Shirakawa, Angew. Chem., Int. Ed. 2001, 40, 2574; A. G.
MacDiarmid, Angew. Chem., Int. Ed. 2001, 40, 2581; A. J. Heeger,
Angew. Chem., Int. Ed. 2001, 40, 2591.
1
5
65
70
2
3
4
N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B.
Holmes, Nature, 1993, 365, 628.
E. Kesters, D. Vanderzande, L. Lutsen, H. Penxten, R. Carleer,
Macromolecules, 2005, 38, 1141.
E. Kesters, M. M. de Kok, R. A. A. Carleer, J. H. P. B. Czech, P. J.
Adriaensens, J. M. Gelan, D. J. Vanderzande, Polymer, 2002, 43,
2
0
5
749.
5
6
R. A. Wessling, J. Polym. Sci., Polym. Symp. 1985, 72, 55.
7
8
8
9
9
5
0
5
0
5
X. Gilch, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan,
A. J. Heeger, Adv. Mater., 2002, 14, 581; H. G. Gilch, W. L.
Wheelwright, J. Polym. Sci. A-1, 1966, 4, 1337; T. Schwalm, J.
Wiesecke, S. Immel, M. Rehahn, Macromol. Rapid Commun., 2009,
3
0, 1295.
7
8
W. Heitz, W. Brügging, L. Freund, M. Gailberger, A. Greiner, H.
Jung, U. Kampschulte, N. Niesner, F. Osan, H.-W. Schmidt, M.
Wicker, Makromol. Chem., 1988, 189, 119; S. Klingelhöfer, C.
Schellenberg, J. Pommerehne, H. Bässler, A. Greiner, W. Heitz,
Macromol. Chem. Phys., 1997, 198, 1511.
A.D. Schlüter, J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 1533;
Y. Yuan, T. Michinobu, J. Polym. Sci. Part A: Polym. Chem., 2011,
4
9, 225.
1
9
1
C.-Y. Yu, M. L. Turner, Angew. Chem., In. Ed., 2006, 45, 7797.
R. N. McDonald, T. W. Campbell, J. Am. Chem. Soc., 1960, 82,
4669; N. Jaballah, M. Chemli, K. Hriz, J.-L. Fave, M. Jouini, M.
Majdoub, Eur. Polym. J., 2011, 47, 78.
Fig. 4 H-NMR spectrum of PBPV-2 in DMF-d
7
.
0
1
2
3
3
5
0
5
However, this is not enough to exclude anionic chain growth
pathway. Fig. 4 shows the H-NMR spectrum of PBPV-2. Based
1
1
J.-F. Morin, N. Drolet, Y. Tao, M. Leclerc, Chem. Mater., 2004, 16,
on the proposed mechanism of Gilch polymerization for BTBB
monomer as shown in ESI† Scheme S3, peaks at δ=2.12 and 4.95
ppm are assigned to the saturated and benzyl halide defects,
respectively. Astonishingly, two peaks at δ=1.28 and 4.65 ppm
have never been reported before. By investigating their chemical
shifts and integral area, we believe that these two peaks should be
t-butoxyl group (δ=1.28 ppm) and the benzyl group (δ=4.65 ppm)
at the chain end. It is possible only if the chain growth reaction is
anionic in nature as shown in Fig. 4.
4
619; E. Tekin, D. A. M. Egbe, J. M. Kranenburg, C. Ulbricht, S.
Rathgeber, E. Birckner, N. Rehmann, K. Meerholz, U. S. Schubert,
Chem. Mater., 2008, 20, 2727.
1
1
2
3
J. Wiesecke, M. Rehahn, Macromol. Rapid Commun., 2007, 28, 188;
T. Schwalm, M. Rehahn, Macromolecules, 2007, 40, 3921.
S. Gillissen, L. Lutsen, D. Vanderzande, J. Gelan, Synth. Met., 2001,
119, 137; W.-F. Su, K.-M. Yeh, Y. Chen, J. Polym. Sci. PartA:
Polym. Chem.,2007, 45, 4377; M. V. D. Borght, D. Vanderzande, J.
Gelan, Polymer, 1998, 39, 4171.
1
1
00
05
1
4
J.-C. Chen, Y.-C. Liu, J.-J. Ju, C.-J. Chiang, Y.-T Chern, Polymer,
2
011, 52, 954.
From the TEMPO equivalent-dependent molecular weights
and formation of aldehyde group combined with t-butoxyl and
benzyl chain end, it is reasonable that the nature of chain growth
15 J. Wiesecke, M. Rehahn, Angew. Chem. Int. Ed., 2003, 42, 567.
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 |
3