SYNTHESIS DIACETYLENIC ETHERS WITH TERMINAL ACETYLENIC BONDS
1959
compounds I–XVI are listed in Table 1. The structure and
composition of the synthesized compounds are confirmed
by GLC and TLC, as well as by IR and NMR spectra
(Table 2). In IR spectra of compounds XIII–XVI there
are absorption bands in the ranges of 3400–3600, 3300,
2100–2140 and 1080–1145 cm–1 characteristic of O–H
bond, ≡C–H, and C–O–C bonds, respectively [12].
monitored by TLC on plates of Silufol UV-254 in dif-
ferent solvent systems and by gas chromatography with
LKhM-8 MD-5 chromatograph.
Synthesis of compounds I–XII. A mixture of 10 g
of sodium hydroxide, 0.2 g of TEBAC, 0.05 M of aceth-
ylenic alcohol, and 0.05 M of propargyl bromide (or
2,3-dichloropropene) was heated at 50–60°C with vigor-
ous stirring for 3 h. An organic layer was removed and
dried with potash. After distillation compounds I–XII
were isolated.
EXPERIMENTAL
IR spectra of the synthesized compounds were re-
corded on a UR-20 spectrophotometer in the range 400–
Counter synthesis of compounds I –IV. To a mixture
of 2 g potassium hydroxide in 30 ml of absolute ethyl
alcohol with vigorous stirring in the course of 30 min
0.05 M of compoundsVII–XII was added. After boiling
the reaction mixture for 6 h were processed by water
1
4000 cm–1 in a thin layer; H NMR spectra, on a Tesla
BS-487 B spectrometer (80 MHz) with HMDS as internal
standard. The purity of the synthesized compounds was
Table 2. 1H NMR and IR spectra of the synthesized compounds I–XVI
Compd..
1Н NMR, δ, ppm
IR spectra ν, cm–1
I
II
2.45 t (2 Н, 2 С≡СН, J=2 Hz), 4.18 d (4 Н, 2 СН2О)
2.43 t (2 Н, 2 С≡СН), 4.15 d (4 Н, 2 СН2О), 3.66–3.74 m (4 Н, ОСН2СН2О)
3280, 2100, 1070
3295, 2110, 1085
III
IV
V
2.46 t (2 Н, 2 С≡СН), 4.20 d (4 Н, 2 СН2О), 3.64 m (8 Н, ОСН2СН2СН2СН2О)
1.46 s (6 Н, 2 СН3), 2.4 s (2 Н, 2 С≡СН), 4.10 s (2 Н, СН2О)
3300, 2120, 1075
3300, 2115, 1090
3305, 2120, 1080
3290, 2110, 1086
1.44 s (6 Н, 2 СН3), 2.42 s (2 Н, 2 С≡СН), 4.08 s (2 Н, СН2О), 3.60 m (4 Н, ОСН2СН2О)
VI
1.42 s (6 Н, 2 СН3), 2.41 s (2 Н, 2 С≡СН), 4.12 s (2 Н, СН2О), 3.63 m (8 Н,
ОСН2СН2СН2СН2О)
VII
5.20 s, 5.50 s (2 Н, СН2=С), 3.10 s (2 Н, 2 СН2), 4.15 s (2 Н, СН2О), 2.42 t (1 Н, С≡СН)
3295, 2115, 1645,
1090, 635
VIII
5.16 s, 5.56 s (2 Н, СН2=С), 3.08 s (2 Н, СН2), 3.65 m (4 Н, ОСН2СН2О), 4.10 s (2 Н, СН2О), 3300, 2100, 1650,
2.46 t (1 Н, С≡СН) 1090, 650
IX
X
5.18 s, 5.48 s (2 Н, СН2=С), 3.13 s (2 Н, СН2), 3.66 m (8 Н, ОСН2СН2СН2СН2О), 4.12 s 3280, 2130, 1640,
(2 Н, СН2О), 2.41 t (1 Н, С≡СН) 1075, 655
5.13 s, 5.45 s (2 Н, СН2=С), 3.10 s (2 Н, СН2), 4.13 m (2 Н, СН2О), 1.45 s (6 Н, 2 СН3), 3290, 2125, 1655,
2.41 s (1 Н, С≡СН) 1080, 700
XI
5.18 s, 5.50 s (2 Н, СН2=С), 3.10 s (2 Н, СН2), 4.16 s (2 Н, СН2О), 3.60 m (4 Н, ОСН2СН2О), 3295, 2120, 1655,
1.38 s (6 Н, 2 СН3), 2.43 s (1 Н, С≡СН) 1085, 650
5.21 s, 5.56 s (2 Н, СН2=С), 3.14 s (2 Н, СН2), 4.14 s (2 Н, СН2О), 3.67 m (8 Н, 3300, 2125, 1645,
ОСН2СН2СН2СН2О), 1.39 s (6 Н, 2 СН3), 2.42 t (1 Н, С≡СН) 1085, 700
2.43 t (2 Н, 2 С≡СН), 4.05 s, 4.15 s (4 Н, 2 СН2О), 3.20–3.85 m (5 Н, ОСН2СНСН2О), 2.98 s 3400, 3300, 2120,
(1 Н, ОН) 1090
2.40 t (1 Н, 2 С≡СН), 4.10 s (2 Н, СН2О), 3.18–3.80 m (5 Н, ОСН2СНСН2О), 2.96 s (1 Н, 3450, 3290, 2125,
ОН), 1.35 s (6 Н, 2 СН3), 2.25 s (1 Н, С≡СН) 1085
XII
XIII
XIV
XV
2.42 t (2 Н, 2 С≡СН), 4.04 s, 4.18 s (4 Н, 2 СН2О), 3.15–3.90 m (9 Н, ОСН2СН2О, 3500, 3300, 2115,
ОСН2СНСН2О) 1070
2.43 t (1 Н, С≡СН), 4.12 s (2 Н, СН2О), 3.20–3.86 m (9 Н, ОСН2СН2О, ОСН2СНСН2О), 3460, 3285, 2110,
1.37 s (6 Н, 2 СН3), 2.23 s (1 Н, С≡СН) 1085
XVI
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 83 No. 11 2010