Inorganic Chemistry
Article
Mechanism of Polymerization of ε-Caprolactone Catalyzed by
Aluminum Salen Complexes. Inorg. Chem. 2013, 52, 13692−13701.
(21) Aubrecht, K. B.; Hillmyer, M. A.; Tolman, W. B. Polymerization
of Lactide by Monomeric Sn(II) Alkoxide Complexes. Macromolecules
2002, 35, 644−650.
(
5) Marlier, E. E.; Macaranas, J. A.; Marell, D. J.; Dunbar, C. R.;
Johnson, M. A.; DePorre, Y.; Miranda, M. O.; Neisen, B. D.; Cramer,
C. J.; Hillmyer, M. A.; et al. Mechanistic Studies of ε-Caprolactone
Polymerization by (salen)AlOR Complexes and a Predictive Model for
Cyclic Ester Polymerizations. ACS Catal. 2016, 6, 1215−1224.
(22) Moravek, S. J.; Messman, J. M.; Storey, R. F. Polymerization
Kinetics of Rac-Lactide Initiated with Alcohol/stannous Octoate Using
in Situ Attenuated Total Reflectance-Fourier Transform Infrared
Spectroscopy: An Initiator Study. J. Polym. Sci., Part A: Polym. Chem.
2
(
009, 47, 797−803.
23) Skoog, D.; Holler, F. J.; Crouch, S. R. Principles of Instrumental
Analysis; Cengage: Independence, KY, 2007.
24) iC IR, version 4.0.641.3; React-IR software; Mettler-Toledo
AutoChem, Inc., Columbus, OH, 2008.
25) Hoops, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.;
(
6) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.;
Williams, D. J. Remarkable Stereocontrol in the Polymerization of
Racemic Lactide Using Aluminum Initiators Supported by Tetraden-
tate Aminophenoxide Ligands. J. Am. Chem. Soc. 2004, 126, 2688−
(
2
(
689.
7) Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; Pugh, R. I.; White,
(
Xu, L.; Mendes, P.; Kummer, U. COPASI - A COmplex PAthway
A. J. P. Study of ligand substituent effects on the rate and
stereoselectivity of lactide polymerization using aluminum salen-type
initiators. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15343−15348.
SImulator. Bioinformatics 2006, 22, 3067−3074.
(26) Olis GlobalWorks, version 4.7; spectral global fitting analysis
software; OLIS, Inc., Bogart, GA, 2000−2003.
(
8) Tang, Z.; Gibson, V. C. rac-Lactide polymerization using
(27) (a) Marshall, E. L.; Gibson, V. C.; Rzepa, H. S. A Computational
aluminum complexes bearing tetradentate phenoxy-amine ligands.
Analysis of the Ring-Opening Polymerization of rac-Lactide Initiated
by Single-Site β-Diketiminate Metal Complexes: Defining the
Mechanistic Pathway and the Origin of Stereocontrol. J. Am. Chem.
Soc. 2005, 127, 6048−6051. (b) Borner, J.; Florke, U.; Gloge, T.;
Bannenberg, T.; Tamm, M.; Jones, M. D.; Doring, A.; Kuckling, D.;
Herres-Pawlis, S. New insights into the lactide polymerisation with
neutral N-donor stabilised zinc complexes: Comparison of imidazolin-
2-imine vs. guanidine complexes. J. Mol. Catal. A: Chem. 2010, 316,
Eur. Polym. J. 2007, 43, 150−155.
(
9) Chisholm, M. H.; Gallucci, J. C.; Quisenberry, K. T.; Zhou, Z.
Complexities in the Ring-Opening Polymerization of Lactide by Chiral
Salen Aluminum Initiators. Inorg. Chem. 2008, 47, 2613−2624.
(
10) Agatemor, C.; Arnold, A. E.; Cross, E. D.; Decken, A.; Shaver,
M. P. Aluminium Salophen and Salen Initiators in the Ring-Opening
Polymerisation of Rac-Lactide and Rac-γ-Butyrolactone: Electronic
Effects on stereoselectivity and polymerisation rates. J. Organomet.
Chem. 2013, 745−746, 335−340.
139−145. (c) Fliedel, C.; Vila-Vico
̧ sa, D.; Calhorda, M. J.; Dagorne, S.;
Aviles, T. Dinuclear Zinc−N-Heterocyclic Carbene Complexes for
́
(
11) Cross, E. D.; Allan, L. E. N.; Decken, A.; Shaver, M. P.
Either the Controlled Ring-Opening Polymerization of Lactide or the
Controlled Degradation of Polylactide Under Mild Conditions.
ChemCatChem 2014, 6, 1357−1367. (d) Manna, C. M.; Kaur, A.;
Yablon, L. M.; Haeffner, F.; Li, B.; Byers, J. A. Stereoselective Catalysis
Achieved through in Situ Desymmetrization of an Achiral Iron
Catalyst Precursor. J. Am. Chem. Soc. 2015, 137, 14232−14235.
Aluminum Salen and Salan Complexes in the Ring-Opening
Polymerization of Cyclic Esters: Controlled Immortal and Copoly-
merization of Rac-β- Butyrolactone and Rac-Lactide. J. Polym. Sci., Part
A: Polym. Chem. 2013, 51, 1137−1146.
(
12) Alcazar-Roman, L. M.; O’Keefe, B. J.; Hillmyer, M. A.; Tolman,
(e) Tabthong, S.; Nanok, T.; Sumrit, P.; Kongsaeree, P.; Prabpai, S.;
W. B. Electronic Influence of Ligand Substituents on the Rate of
Polymerization of Epsilon-Caprolactone by Single-Site Aluminium
Alkoxide Catalysts. Dalton Trans. 2003, 3082−3087.
Chuawong, P.; Hormnirun, P. Bis(pyrrolidene) Schiff Base Aluminum
Complexes as Isoselective-Biased Initiators for the Controlled Ring-
Opening Polymerization of rac-Lactide: Experimental and Theoretical
Studies. Macromolecules 2015, 48, 6846−6861. (f) Wang, Y. C.;
Mehmood, A.; Zhao, Y. A.; Qu, J. P.; Luo, Y. Computational Studies
on the Selective Polymerization of Lactide Catalyzed by Bifunctional
Yttrium NHC Catalyst. Inorganics 2017, 5, 46. (g) Robert, C.; Schmid,
T. E.; Richard, V.; Haquette, P.; Raman, S. K.; Rager, M. N.; Gauvin,
R. M.; Morin, Y.; Trivelli, X.; Guerineau, V.; del Rosal, I.; Maron, L.;
Thomas, C. M. Mechanistic Aspects of the Polymerization of Lactide
Using a Highly Efficient Aluminum(III) Catalytic System. J. Am. Chem.
(
13) Wang, Y.; Ma, H. Exploitation of Dinuclear Salan Aluminum
Complexes for Versatile Copolymerization of ε-Caprolactone and L-
Lactide. Chem. Commun. 2012, 48, 6729−6731.
(
14) Gupta, K. C.; Sutar, A. K. Catalytic Activities of Schiff Base
Transition Metal Complexes. Coord. Chem. Rev. 2008, 252, 1420−
450.
15) Cozzi, P. G. Metal-Salen Schiff Base Complexes in Catalysis:
Practical Aspects. Chem. Soc. Rev. 2004, 33, 410−421.
16) Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam, W.; Young,
1
(
(
Soc. 2017, 139, 6217−6225.
V. G., Jr.; Hillmyer, M. A.; Tolman, W. B. A Highly Active Zinc
Catalyst for the Controlled Polymerization of Lactide. J. Am. Chem.
Soc. 2003, 125, 11350−11359.
28a
(
28) Following a previously reported analysis, the ratio of the mmr,
1
mrm, rmr, and rmm tetrad peaks in the homonuclear decoupled H
NMR spectrum of the PLA product can be used to assess the relative
significance of site and chain end control. The peak ratio we observe
(
17) Rosen, T.; Popowski, Y.; Goldberg, I.; Kol, M. Zinc Complexes
1
7
of Sequential Tetradentate Monoanionic Ligands in the Isoselective
and that which was previously reported do not match either
predicted ratio (1:2:1:1 for site control vs 1:1:0:1 for chain end
control). Critically, the rmr peak is of significant intensity, indicative of
the importance of the site control. While our calculations only delve
into the basis for this path, we recognize that a complete analysis
would have to take into account chain end effects by replacing the
isopropoxide with more accurate models of the growing polymer
chain. Such extensive calculations go beyond the scope of this work,
which focuses more on the influence of the substituents on the
ROTEP rate. (a) Ovitt, T. M.; Coates, G. W. Stereoselective Ring-
Opening Polymerization of rac-Lactide with a Single-Site, Racemic
Aluminum Alkoxide Catalyst: Synthesis of Stereoblock Poly(lactic
acid). J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4686−4692.
Polymerization of Rac-Lactide. Chem. - Eur. J. 2016, 22 (33), 11533−
1
1536.
(
18) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor,
G. C. Synthesis, Structure, and Spectroscopic Properties of Copper(II)
Compounds Containing Nitrogen−Sulphur Donor Ligands; the
Crystal and Molecular Structure of Aqua[1,7-bis(N-Methylbenzimida-
zol-2′-Yl)-2,6-dithiaheptane]copper(II) Perchlorate. J. Chem. Soc.,
Dalton Trans. 1984, 1349−1356.
(
19) Labourdette, G.; Lee, D. J.; Patrick, B. O.; Ezhova, M. B.;
Mehrkhodavandi, P. Unusually Stable Chiral Ethyl Zinc Complexes:
Reactivity and Polymerization of Lactide. Organometallics 2009, 28,
1
(
309−1319.
20) Messman, J. M.; Storey, R. F. Real-Time Monitoring of the
Ring-Opening Polymerization of Rac-Lactide with in Situ Attenuated
Total Reflectance/ Fourier Transform Infrared Spectroscopy with
Conduit and Diamond-Composite Sensor Technology. J. Polym. Sci.,
Part A: Polym. Chem. 2004, 42, 6238−6247.
G
Inorg. Chem. XXXX, XXX, XXX−XXX