RSC Advances
Paper
ꢁ
1
1
1
642 cm was for C]O stretching vibration (Fig. 8a). The H
I. A. Aksay, R. K. Prud'Homme and L. C. Brinson, Nat.
Nanotechnol., 2008, 3, 327–331.
NMR spectrum of compound 4d exhibited a single character-
istic peak at d ¼ 6.17 ppm for the CH group. The D O
4 Q. Yang, X. Pan, K. Clarke and K. Li, Ind. Eng. Chem. Res.,
2012, 51, 310–317.
2
exchangeable protons of amine and hydroxyl were observed in
1
3
the region of 7–8.30 ppm (Fig. 8b). The CNMR spectrum of
compound 4d showed a prominent peak at around 50.55 ppm,
which was related to the CH group and the peaks at 185 ppm
and 181 ppm correspond to the carbonyl groups (Fig. 8c).
5 U. K. Sur, Int. J. Electrochem., 2012, 2012, 1–12.
6 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and
R. S. Ruoff, Adv. Mater., 2010, 22, 3906–3924.
7 F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini,
A. C. Ferrari, R. S. Ruoff and V. Pellegrini, Science, 2015,
347, 1246501.
3.4. Proposed mechanism
8
S. C. Ray, Application and Uses of Graphene Oxide and Reduced
Graphene Oxide, Elsevier Inc., 2015.
B. Aday, H. Pamuk, M. Kaya and F. Sen, J. Nanosci.
Nanotechnol., 2016, 16, 6498–6504.
According to the proposed mechanism presented in Scheme 2,
aromatic amines react with activated benzaldehyde in the
presence of the catalyst through nucleophilic attack to form
activated imine as an intermediate(I). Then, the intermediate(I)
is attacked by 2-hydroxynaphthalene-1,4-dione through inter-
molecular H-atom transfer and nucleophilic addition, which
gives intermediate(II) and will undergo tautomerization to form
the nal products.
9
1
1
1
0 S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk,
M. F. Ebeo ˘g lugil and F. Sen, Anal. Chim. Acta, 2017, 989,
88–94.
1 M. D. P. Lavin-Lopez, A. Romero, J. Garrido, L. Sanchez-Silva
and J. L. Valverde, Ind. Eng. Chem. Res., 2016, 55, 12836–
12847.
3
.5. Comparison of the performance of f-SiO @GO@Co with
2
2 R. Hajian, K. Fung, P. P. Chou, S. W. Wang and
some previously reported heterogenous catalysts
K. A. Balderston, Mater. Matters, 2019, 14, 37–45.
Comparative tests were performed to check the ability of f- 13 D. Chen, H. Feng and J. Li, Chem. Rev., 2012, 112, 6027–6053.
SiO @Go@Co as opposed to other previously reported catalysts 14 S. R. Chaurasia, R. Dange and B. M. Bhanage, Catal.
2
in the literature to synthesise aminonaphthoquinone. The
results revealed that f-SiO @Go@Co had a better catalytic 15 A. Dandia, S. Bansal, R. Sharma, K. S. Rathore and V. Parewa,
Commun., 2020, 137, 105933.
2
performance than the other catalysts in terms of yield and
RSC Adv., 2018, 8, 30280–30288.
production time (Table 5, entry 5).
16 A. Vijay Kumar and K. Rama Rao, Tetrahedron Lett., 2011, 52,
5188–5191.
1
7 Z. Li, R. Wang, R. J. Young, L. Deng, F. Yang, L. Hao, W. Jiao
and W. Liu, Polymer, 2013, 54, 6437–6446.
4
. Conclusion
GO@f-SiO @Co is a heterogenous catalyst synthesized with 18 T. Jiang, T. Kuila, N. H. Kim, B. C. Ku and J. H. Lee, Compos.
2
spherical silica particles graed on the surface of graphene
oxide with the help of ethylenediamine ligand and coordination 19 Y. J. Wan, L. X. Gong, L. C. Tang, L. Bin Wu and J. X. Jiang,
with Co(II). The activity of the catalyst for the synthesis of ami-
Composites, Part A, 2014, 64, 79–89.
nonaphthoquinones has been assessed. The results showed 20 D. Vennerberg, Z. Rueger and M. R. Kessler, Polymer, 2014,
Sci. Technol., 2013, 79, 115–125.
that the catalyst with high catalytic activity gave excellent yield
55, 1854–1865.
under mild conditions in a short reaction time.
21 X. Wang, W. Xing, P. Zhang, L. Song, H. Yang and Y. Hu,
Compos. Sci. Technol., 2012, 72, 737–743.
2
2 S. Z. Haeri, B. Ramezanzadeh and M. Asghari, J. Colloid
Interface Sci., 2017, 493, 111–122.
Conflicts of interest
There are no conicts to declare.
23 X. Shi, T. A. Nguyen, Z. Suo, Y. Liu and R. Avci, Surf. Coat.
Technol., 2009, 204, 237–245.
2
4 T. Wang, H. Ge and K. Zhang, J. Alloys Compd., 2018, 745,
Acknowledgements
705–715.
We are very grateful to the Kashan University for the nancial 25 A. N. Banerjee, Interface Focus, 2018, 8, 20170056.
support to run this project.
26 V. Georgakilas, J. A. Perman, J. Tucek and R. Zboril, Chem.
Rev., 2015, 115, 4744–4822.
2
7 M. Alvand and F. Shemirani, Microchim. Acta, 2017, 184,
References
1621–1629.
1
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, 28 N. Seifvand and E. Kowsari, RSC Adv., 2015, 5, 93706–93716.
S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 2004, 29 R. J. R. Lumby, P. M. Joensuu and H. W. Lam, Org. Lett.,
06, 666–669. 2007, 9, 4367–4370.
X. Wang, L. Zhi and K. M u¨ llen, Nano Lett., 2008, 8, 323–327. 30 J. Wang, K. Feng, H. H. Zhang, B. Chen, Z. J. Li, Q. Y. Meng,
3
2
3
T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin,
M. Herrera-Alonso, R. D. Piner, D. H. Adamson,
H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen,
L. P. Zhang, C. H. Tung and L. Z. Wu, Beilstein J.
Nanotechnol., 2014, 5, 1167–1174.
17114 | RSC Adv., 2021, 11, 17108–17115
© 2021 The Author(s). Published by the Royal Society of Chemistry