In summary, our work herein provides a universal method,
by which molecular WOCs can be firmly immobilized on
conductive carbon surfaces, and meanwhile keep their catalytic
activity at the hybrid interface. In principle, this method should be
applicable to any molecular WOCs that can be modified with
terminal acetylene groups. An employment of an engineered
carbon electrode with large specific area, rather than GC, will
significantly improve the concentration of WOC on the surface as
well as promote catalytic current density in order of magnitude.
Moreover, our strategy reported here is not limited by the size or
specific properties of conductive carbon surfaces, which will
inspire fabrication of an efficient water-splitting device in the
context of exploitation of sustainable solar fuels.
We thank the Swedish Research Council, the K & A
Wallenberg Foundation, the Swedish Energy Agency, the
China Scholarship Council (CSC), the National Natural
Science Foundation of China (21120102036) and the National
Basic Research Program of China (2009CB220009) for financial
support of this work.
Notes and references
1 J. Barber, Chem. Soc. Rev., 2009, 38, 185–196.
2 H. Dau, C. Limberg, T. Reiser, M. Risch, S. Roggan and
P. Strasser, ChemCatChem, 2010, 2, 724–761.
3 Y. Xu, A. Fischer, L. Duan, L. Tong, E. Gabrielsson, B. Akermark
and L. Sun, Angew. Chem., Int. Ed., 2010, 49, 8934–8937.
4 A. Sartorel, M. Carraro, G. Scorrano, R. D. Zorzi, S. Geremia,
N. D. McDaniel, S. Bernhard and M. Bonchio, J. Am. Chem. Soc.,
2008, 130, 5006–5007.
5 L. Duan, Y. Xu, M. Gorlov, L. Tong, S. Andersson and L. Sun,
Chem.–Eur. J., 2010, 16, 4659–4668.
6 Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev,
A. E. Kuznetsov, Z. Luo, K. I. Hardcastle and C. L. Hill, Science,
2010, 328, 342–345.
Fig. 2 Electroactivity of the [RuII(pdc)(pic)3] functionalized GC surface.
(a) Chronoamperometric current density measured in potassium phos-
phate buffer (pH 7.0, IS = 0.1 M) at the [RuII(pdc)(pic)3]@GC electrode
(red trace) and the pristine GC electrode (black trace) under application
of a sequence of potential steps shown in Fig. S8 (ESIw). (b) TOF plot of
the [RuII(pdc)(pic)3] functionalized GC electrode as a function of over-
potential Z. The inset is a Tafel plot showing current density of the
[RuII(pdc)(pic)3]@GC surface vs. Z.
7 J. L. Fillol, Z. Codola
M. Costas, Nat. Chem., 2011, 3, 807–813.
8 L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov,
A. Llobet and L. Sun, Nat. Chem., 2012, 4, 418–423.
9 L. Duan, L. Tong, Y. Xu and L. Sun, Energy Environ. Sci., 2011, 4,
3296–3313.
10 P. D. Tran, V. Artero and M. Fontecave, Energy Environ. Sci.,
2010, 3, 727–747.
11 Z. Chen, J. J. Concepcion, J. W. Jurss and T. J. Meyer, J. Am.
Chem. Soc., 2009, 131, 15580–15581.
12 W. J. Youngblood, S.-H. A. Lee, Y. Kobayashi, E. A. Hernandez-
Pagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust and
T. E. Mallouk, J. Am. Chem. Soc., 2009, 131, 926–927.
13 J. J. Concepcion, J. W. Jurss, P. G. Hoertz and T. J. Meyer, Angew.
Chem., Int. Ed., 2009, 48, 9473–9476.
14 F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse,
C. Maccato, S. Rapino, B. R. Gonzalez, H. Amenitsch, T. Da Ros,
L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles,
F. Paolucci, M. Prato and M. Bonchio, Nat. Chem., 2010, 2, 826–831.
15 L. Li, L. Duan, Y. Xu, M. Gorlov, A. Hagfeldt and L. Sun, Chem.
Commun., 2010, 46, 7307–7309.
16 F. Li, B. Zhang, X. Li, Y. Jiang, L. Chen, Y. Li and L. Sun, Angew.
Chem., Int. Ed., 2011, 50, 12276–12279.
17 M. Meldal and C. W. Tornee, Chem. Rev., 2008, 108, 2952–3015.
18 L. Tong, Y. Wang, L. Duan, Y. Xu, X. Cheng, A. Fischer, M. S.
G. Ahlquist and L. Sun, Inorg. Chem., 2012, 51, 3388–3398.
, I. Garcia-Bosch, L. Gomez, J. J. Pla and
´ ´
electrons, assigned to catalytic water oxidation by immobilized
[RuII(pdc)(pic)3], can be derived from the subtraction between the
integrated charge through a [RuII(pdc)(pic)3]@GC (Qc, C cmꢀ2
)
and that through a pristine GC (Qp, C cmꢀ2) during the integration
time (t = 360 s) of given overpotential. Thus, the TOF of
electroactive WOC on the [RuII(pdc)(pic)3]@GC surface can
be estimated by the following equation:
1
4
1
ðQc ꢀ QpÞ
FG0
TOF ¼
ꢁ
ꢁ
t
where F is Faraday’s constant. Generation of every O2 molecule
includes extraction of four electrons from two H2O molecules.
The logarithm of yielded TOFs varies linearly on the applied
overpotentials from 300 to 700 mV, as shown in Fig. 2b. This
Tafel-like plot implicates a rate-determining step of electron
transfer for O2 evolution from the [RuII(pdc)(pic)3]@GC surface.
An initial TOF of 0.073 s–1 was achieved at Z = 300 mV, which
reaches 1.6 s–1 at Z = 700 mV. Our previous study demonstrated
that water oxidation by [RuII(pdc)(pic)3] occurred in a typical
homogenous CeIV–CF3SO3H solution with a TOF of 0.23 s–1.5,18
Although the calculated TOF from [RuII(pdc)(pic)3]@GC
represented an upper bound of the realistic value, because
Faradaic efficiency was assumed to be 100% in the calculation,
the result emphasized a comparable, if not superior, catalytic
activity of [RuII(pdc)(pic)3] on conductive surfaces in relation
to homogeneous conditions.
19 R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874–922.
´
20 D. Evrard, F. Lambert, C. Policar, V. Balland and B. Limoges,
Chem.–Eur. J., 2008, 14, 9286–9291.
21 J. Pinson and F. Podvorica, Chem. Soc. Rev., 2005, 34, 429–439.
22 A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet,
´ ´
R. Metaye, A. Fihri, S. Palacin and M. Fontecave, Science, 2009,
326, 1384–1387.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.