Two Three-Dimensional Metal-Organic Frameworks
References
Table 4 The molar enthalpy changes of the formation reaction of
1 and 2 at 298.15 K
[1] O. R. Evans, Z. Wang, R. G. Xiong, B. M. Foxman, W. Lin,
Inorg. Chem. 1999, 38, 2969.
[2] R. H. Groeneman, J. L. Atwood, Cryst. Engin. 1999, 2, 241.
[3] S. H. Dale, M. R. J. Elsegood, Acta Crystallogr. 2003, E59,
m586.
[4] T. Matsuzaki, Acta Crystallogr. 1977, B28, 1977.
[5] C. S. Hong, Y. Do, Inorg. Chem. 1997, 36, 5684.
[6] L. Pan, N. W. Zheng, Y. G. Wu, S. Han, R. Y. Yang, X. Y.
Huang, J. Li, Inorg. Chem. 2001, 40, 828.
[7] C. Daiguebonne, Y. Gerault, O. Guillou, A. Lecerf, K. Bou-
bekeur, P. Batail, M. Kahn, O. Kahn, J. Alloys Compds. 1998,
50, 275.
Q (mJ)
Experimental Run
1
2
1
2
3
4
5
6
884.419
880.398
878.219
885.796
883.347
876.987
468.966
472.854
475.665
465.267
474.892
468.698
471.057 1.660
2.617 0.009
Mean
881.528 1.446
4.897 0.008
ΔrHθm (kJ molϪ1
)
[8] C. Daiguebonne, O. Guillou, Y. Gerault, A. Lecerf, K. Bou-
bekeur, Inorg. Chim. Acta 1999, 284, 139.
[9] S. H. Dale, M. R. J. Elsegood, S. Kainth, Acta Crystallogr.
2003, C59, 505.
Table 3 (109.29 0.693) J·molϪ1 KϪ1 for 1 and (81.162
0.858) J·molϪ1 KϪ1 for 2 [32].
[10] R. Cao, D. F. Sun, Y. C. Liang, M. C. Hong, K. Tatsumi, Q.
Shi, Inorg. Chem. 2002, 41, 2087.
[11] S. F. Si, C. H. Li, R. J. Wang, Y. D. Li, J. Mol. Struct. 2004,
703, 11.
[12] H. Abourahma, B. Moulton, V. Kravtsov, M. J. Zaworotko, J.
Am. Chem. Soc. 2002, 124 , 9990.
[13] M. Absi, C. L. Stern, D. I. Yoon, J. T. Hupp, Acta Crystallogr.
1997, C53, 1054.
[14] G. Xie, M. H. Zeng, S. P. Chen, S. L. Gao, Acta Crystallogr.
2005, E61, 2273.
[15] H. T. Zhang, Y. Z. Li, L. Xu, X. Z. You, Acta Crystallogr.
2005, E61, 1727.
3.5 The molar enthalpy of formation reaction
In order to further study the thermal stabilities of 1 and
2, we have measured their enthalpy changes of formation
reactions in water at 298.15 K based on an RD496-III type
microcalorimeter. The reaction equation for compounds is
showed as the equation (1). UV spectra of the final reaction
solutions are identical with those of solution of crystal
sample in water. The molar enthalpy changes of formation
reactions of1 and 2 are deduced and listed in Table 4.
[16] H. P. Xiao, J. G. Wang, X. H. Li, A. Morsali, Z. Anorg. Allg.
Chem. 2005, 631, 2976.
[17] G. Xie, M. H. Zeng, S. P. Chen, S. L. Gao, Acta Crystallogr.
2006, E62, 397.
water
5-NO2-H2BDC ϩ 2NaOH ϩ MIICl2 ·6H2O
Ǟ
(1)
[MII(5-NO2-BDC)(H2O)6] ϩ NaCl(M ϭ Sr, Ba)
[18] H. J. Chen, J. Zhang, W. L. Feng, M. Fu, Inorg. Chem. Com-
mun. 2006, 9, 300.
4 Conclusions
[19] H. P. Xiao, J. X. Yuan, Acta Crystallogr. 2004, E60, 1501.
[20] M. D. Ye, H. P. Xiao, M. L. Hu, Acta Crystallogr. 2004,
E60, m1516.
[21] H. Y. He, Y. L. Zhou, L. G. Zhu, Acta Crystallogr. 2004,
C60, 569.
[22] H. P. Xiao, X. H. Li, Y. Q. Cheng, Acta Crystallogr. 2005,
E61, 158.
[23] Y. Xin, J. Tao, R. B. Huang, L. S. Zheng, Main Group Met.
Chem. 2002, 25, 691.
In summary, this study provides an example of two novel
alkaline earth metal complexes based on 5-NO2-H2BDC li-
gand. Both compounds present three-dimensional frame-
works built up from infinite chains of edge-sharing twelve-
membered rings through OϪH···O hydrogen bonds. On the
basis of microcalorimetry, the specific heat capacity and the
molar enthalpy change of formation reaction at 298.15 K
[24] J. Tao, X. Yin, S. Y. Yang, R. B. Huang, L. S. Zheng, Main
Group Met. Chem. 2002, 25, 707.
were determined as (109.29
0.693) J molϪ1 KϪ1 and
(4.897
0.008) kJ molϪ1 for 1, together with (81.162
[25] J. H. Luo, M. C. Hong, R. H. Wang, Rong Cao, L. Han, D.
Q. Yuan, Z. Z. Lin, Y. F. Zhou, Inorg. Chem. 2003, 42, 4486.
[26] J. Tao, X. Yin, Y. B. Jiang, L. F. Yang, R. B. Huang, L. S.
Zheng, Eur. J. Inorg. Chem. 2003, 10, 2678.
[27] H. J. Chen, Chin. J. Inorg. Chem. 2005, 21, 705.
[28] X. J. Li, R. Cao, W. H. Bi, Y. Q. Wang, Y. L. Wang, X. Li, Z.
G. Guo, Cryst. Growth Des. 2005, 5, 1651.
0.858) J molϪ1 KϪ1 and (2.617 0.009) kJ molϪ1 for 2.
Supplemental material. Supplementary data are available from
the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK (fax: ϩ44-1233-336033; e-mail:
quoting the Deposit No. 625479. and Deposit No. 625480.
[29] Y. X. Ren, S. P. Chen, G. Xie, S. L. Gao, Q. Z. Shi, Inorg.
Chim. Acta 2006, 359, 2047.
[30] J. H. Luo, M. C. Hong, R. H. Wang, R. Cao, L. Han, Z. Z.
Lin, Eur. J. Inorg. Chem. 2003, 10, 2705.
[31] R. Murugavel, V. V. Karambelkar, G. Anantharaman, M. G.
Walawalkar, Inorg. Chem. 2000, 39, 1381.
[32] Q. Shuai, S. P. Chen, X. W. Yang, S. l. Gao, Thermochim. Acta
2006, 447, 45.
Acknowledgements. We gratefully acknowledge the financial sup-
port from the National Natural Science Foundation of China
(Grant Nos. 20471047 and 20771089), the National Natural Sci-
ence Fundation of Shaanxi Province(No. 2007B02). and Shaanxi
Physico-chemical Key Laboratory and Shaanxi key Laboratory of
Chemical Reaction Engineering.
Z. Anorg. Allg. Chem. 2008, 1591Ϫ1596
© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1595