ChemComm
Page 4 of 4
COMMUNICATION
DOI: 10.1039/C5CC04506A
redox potential of Ga(III)/Ga(II) is higher than Cr(III)/Cr(II). This is
consistent with the ~2× higher turnover number demonstrated by
3
4
B. Kumar et al., Annu. Rev. Phys. Chem., 2012, 63, 541-569.
P. D. Tran, L. H. Wong, J. Barber and J. S. C. Loo, Energy &
Environ. Sci., 2012, , 5902-5918.
UiO-66-CrCAT when compared to UiO-66-GaCAT.
Moreover,
5
lifetimes of solid-state fluorescence, obtained by time-correlated
single photon counting (TCSPC), confirmed that charge transfer
5
6
Y. Izumi, Coord. Chem. Rev., 2013, 257, 171-186.
T. Sakakura, J. C. Choi and H. Yasuda, Chem. Rev., 2007, 107, 2365-
2387.
between catbdc ligand and metals occurred through
a LMCT
mechanism (Fig. 4b, see details in ESI). This result also suggests that
UiO-66-CrCAT holds charges longer than UiO-66-GaCAT for possible
electron transfer to CO2.
7
C. Costentin, M. Robert and J. M. Saveant, Chem. Soc. Rev., 2013,
42, 2423-2436.
8
9
W.-H. Wang et al., Energy & Environ. Sci., 2012,
5, 7923-7926.
The catalytic ability with respect to turnover frequency (TOF, h-1)
Y. Qu and X. Duan, Chem. Soc. Rev., 2013, 42, 2568-2580.
of the UiO-66-M(III)CAT MOFs were compared to other catalytic 10 A. J. Morris, G. J. Meyer and E. Fujita, Acc. Chem. Res., 2009, 42
systems (Tables S4-S6). The turnover frequency of UiO-66-CrCAT 1983-1994.
(1.87 h-1) and UiO-66-GaCAT (1.02 h-1) were substantially greater than 11 C. Wang, Z. Xie, K. E. deKrafft and W. Lin, J. Am. Chem. Soc.
many reported heterogeneous systems that produce formate or 2011, 133, 13445-13454.
,
,
formic acid as the photoproduct (Table S4). In contrast, the TOF of 12 Y. Fu et al., Angew. Chem. Int. Ed., 2012, 51, 3364-3367.
these MOFs was lower than that of many homogenous systems 13 Y. Horiuchi et al.,, J. Phys. Chem. C, 2012, 116, 20848-20853.
reported (Table S5); however, the MOFs have the advantage of being 14 T. Toyao et al., Catal. Sci. Technol., 2013,
both recyclable and not requiring an exogenous photosensitizer, 15 Y. Lee, S. Kim, J. K. Kang and S. M. Cohen, Chem. Commun., 2015,
which are both shortcomings of the homogenous systems reported. 51, 5735-5738.
Therefore, the MOF catalysts reported here balance the advantages 16 L. Li et al., Chem. Sci., 2014,
of existing heterogenous and homogenous photoreduction catalysts. 17 M. Kim, J. F. Cahill, H. Fei, K. A. Prather and S. M. Cohen, J. Am.
In addition, the UiO-66-M(III)CAT MOFs showed good photocatalytic Chem. Soc., 2012, 134, 18082-18088.
ability when compared to other MOF-based CO2 reduction 18 S. Pullen, H. Fei, A. Orthaber, S. M. Cohen and S. Ott, J. Am. Chem.
photocatalytic systems studied to date (Table S6). When compared Soc., 2013, 135, 16997-17003.
3, 2092-2099.
5, 3808-3813.
to other MOFs that do not use an added exogenous photosensitizer, 19 H. Fei et al., J. Am. Chem. Soc., 2014, 136, 4965-4973.
TOF values for the UiO-66-M(III)CAT MOFs are noticeably better than 20 H. Fei, S. Pullen, A. Wagner, S. Ott and S. M. Cohen, Chem.
previously studied MOFs that generate formate from CO2.
Commun., 2015, 51, 66-69.
New MOF CO2 reduction photocatalysts were prepared from 21 C. H. Hendon et al., J. Am. Chem. Soc., 2013, 135, 10942-10945.
isolated monocatecholato metal sites that were active under visible 22 H. Q. Pham et al., J. Phys. Chem. C, 2014, 118, 4567-4577.
light irradiation. The catbdc2- substituted UiO-66-CAT generated 23 L. Shen et al., Phys. Chem. Chem. Phys., 2014, 17, 117-121.
electron-hole pairs under visible light without light sensitizers. Both 24 D. E. Wheeler and J. K. McCusker, Inorg. Chem., 1998, 37, 2296-
UiO-66-M(III)CAT-derivatives reduced CO2 to HCOOH with the aid of
2307.
BNAH and TEOA. The Cr-derivative showed better efficiency than Ga 25 A. J. Simaan et al., Chem. Eur. J., 2005, 11, 1779-1793.
due to its open shell electronic structure. Further optimization of 26 S. C. Ghosh, M. C. Biesinger, R. R. LaPierre and P. Kruse, J. Appl.
these systems may produce materials with the advantages of
Phys., 2007, 101, 114322.
heterogeneous systems, but with activities comparable to 27 M. C. Biesinger et al., Appl. Surf. Sci., 2011, 257, 2717-2730.
homogenous reduction catalysts.
28 C. Pac et al., J. Am. Chem. Soc., 1981, 103, 6495-6497.
grant from the 29 X. Q. Zhu et al., Chem. Eur. J., 2003, , 3937-3945.
These experiments were supported by
a
9
Department of Energy, Office of Basic Energy Sciences, Division of 30 Y. Tamaki, T. Morimoto, K. Koike and O. Ishitani, Proc. Natl. Acad.
Materials Science and Engineering under Award No. DE-FG02- Sci. USA, 2012, 109, 15673-15678.
08ER46519 (Y.L., H.F., S.M.C.). Additional support for XPS, PL, and 31 W. Liang, R. Babarao and D. M. D'Alessandro, Inorg. Chem., 2013,
TCSPC studies were provided to S.K. and J.K.K. by the Korea Center
for Artificial Photosynthesis (2009-0093881).
52, 12878-12880.
32 T. Reda, C. M. Plugge, N. J. Abram and J. Hirst, Proc. Natl. Acad.
Sci. USA, 2008, 105, 10654-10658.
Notes and references
33 H. Takeda, H. Koizumi, K. Okamoto and O. Ishitani, Chem.
Commun., 2014, 50, 1491-1493.
a
Department of Chemistry and Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States. E-mail:
34 G. Zhang, G. Kim and W. Choi, Energy & Environ. Sci., 2014, 7,
b
954-967.
Graduate School of EEWS, Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, 305-701, Republic of Korea.
† Electronic Supplementary Information (ESI) available: experimental,
supplementary figures and tables, details on comparison study]. See
DOI: 10.1039/b000000x/
35 A. Hameed, M. A. Gondal and Z. H. Yamani, Catal. Commun., 2004,
, 715-719.
5
36 F. C. de Oliveira et al., Chem. Phys. Lett., 2013, 585, 84-88.
1
2
N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. USA, 2006,
103, 15729-15735.
G. Centi, E. A. Quadrelli and S. Perathoner, Energy & Environ. Sci.
,
2013, , 1711-1731.
6
4 | Chem. Commun., 2015, 00, 1-4
This journal is © The Royal Society of Chemistry 2012