S.-Y. Chen et al. / Tetrahedron Letters 50 (2009) 6795–6797
6797
Table 2 (continued)
Entry
Substrate
Product
Yieldb (%)
70
Br
F
F
7
8
2g
F
1g
Br
75c
81
1h
2h
Br
9
1i
2i
Br
10
65 E/E:Z/E = 99:1d
1j
2j
Br
11
66 E/E:Z/E = 98.5:1.5d
1k
2k
a
Bromobenzene, 5 mmol; cobalt salt, 5 mol %; Mg turnings, 6 mmol; anhydrous THF, 10 mL; under dry air; and reaction time 4 h.
Isolated yields after column chromatography.
Recrystallized from ethanol.
b
c
d
The stereoselectivity was determined by GC–MS.
All tested aromatic bromides could give the corresponding biaryls
in good yields (entries 1–7). Strong electron-donating substituent
such as methoxy group on the phenyl ring has little effect on the
reaction (entries 4 and 5). The substituent at ortho-position de-
creased the yield (entry 2 and 6), which might be attributed to
the steric effect. For p-fluorophenyl bromide (entry 7), decreased
yield of homo-coupling product was obtained, while some ter-
phenyl compounds were obtained. This method also worked well
in the reaction of 2-bromonaphthalene, and 2,20-binaphthalene
was obtained with 75% yield after recrystallization from ethanol
(entry 8). Moreover, activated alkyl bromide such as benzyl bro-
mide could also be converted to 1,2-diphenylethane smoothly
through homo-coupling with 81% yield (entry 9). When ester or
nitrile substituents were present, no obvious conversion was
observed (data not shown), which was probably due to the surface
deactivation of Mg caused by the substituted groups.18 More inter-
estingly, under the same conditions, trans-b-bromostyrene also
afforded the corresponding conjugated dienes in moderate yields
(entries 10 and 11), and the coupling is highly stereoselective to
give trans-products. Such high stereoselectivity might be attrib-
uted to the fast coupling of alkenyl Grignard reagents.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. (a) Thomson, R. H. The Chemistry of Natural Products; Blackie: Glasgow, 1985;
(b) Hassan, J.; Sevignon, M.; Cozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002,
102, 1359; (c) Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651.
2. (a) Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174; (b) Fanta, P. E. Chem. Rev.
1964, 64, 613.
3. (a) Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Sasson, Y. Org. Lett. 2000, 2,
211; (b) Venkatraman, S.; Li, C. J. Org. Lett. 1999, 1, 1133; (c) Lee, K.; Lee, P. H.
Tetrahedron Lett. 2008, 49, 4302; (d) Wang, L.; Zhang, Y.; Liu, L.; Wang, Y. J. Org.
Chem. 2006, 71, 1284; (e) Lee, P. H.; Seommon, D.; Lee, K. Org. Lett. 2005, 7, 343;
(f)Catellani, M.;Motti, E.;DellaCá, N.;Ferraccioli,R.Eur.J.Org. Chem.2007, 72, 4153.
4. Moncomble, A.; Floch, P. L.; Gosmini, C. Chem. Eur. J. 2009, 15, 4770.
5. Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. Tetrahedron 2000, 56, 9601.
6. (a) McKillop, A.; Elsom, L. F.; Taylor, E. C. J. Am. Chem. Soc. 1968, 90, 2423; (b)
Elsom, L. F.; McKillop, A.; Taylor, E. C.. In Organic Syntheses; Wiley: New York,
1988; Collect. Vol. VI. p 488.
7. (a) Ishikawa, T.; Ogawa, A.; Hirao, T. Organometallics 1998, 17, 5713; (b) Hirao,
T. Coord. Chem. Rev. 2003, 237, 271.
8. Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi,
H. Adv. Synth. Catal. 2001, 343, 264.
In conclusion, we have developed an efficient procedure to
construct C–C bond by cobalt-catalyzed direct homo-coupling of
aryl bromide in the presence of magnesium using atmospheric
oxygen as oxidant under mild conditions. Alkenyl bromides were
also found to be suitable substrates for the reaction system with
high stereoselectivity. Further studies including mechanism
exploration about the cobalt-catalyzed coupling reactions are in
progress.
9. Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316.
10. Sakellarios, E.; Kyrimis, T. Ber. Dtsch. Chem. Ges. 1924, 57B, 322.
11. Nagano, T.; Hayashi, T. Org. Lett. 2005, 7, 491.
12. Cahiez, G.; Chaboche, C.; Mahuteau-Betzer, F.; Ahr, M. Org. Lett. 2005, 7, 1943.
13. Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788.
14. Liu, W.; Lei, A. W. Tetrahedron Lett. 2008, 49, 610.
15. (a) Xu, X. L.; Cheng, D. P.; Pei, W. J. Org. Chem. 2006, 71, 6637; (b) Yuan, Y.; Bian,
Y. B. Appl. Organomet. Chem. 2008, 22, 15.
16. (a) Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2002,
124, 6514; (b) Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2006, 128,
1866; (c) Cahiez, G.; Chaboche, C.; Duplais, C.; Giulliani, A.; Moyeuxa, A. Adv.
Synth. Catal. 2008, 350, 1484; (d) Kobayashi, T.; Ohmiya, H.; Yorimitsu, H.;
Oshima, K. J. Am. Chem. Soc. 2008, 130, 11276; (e) Gosmini, C.; Bégouin, J. M.;
Moncomble, A. Chem. Commun. 2008, 3221; (f) Cahiez, C.; Chaboche, C.;
Duplais, C.; Moyeux, A. Org. Lett. 2009, 11, 277.
17. (a) Davis, R.; Mallia, V. A.; Das, S. Chem. Mater. 2003, 15, 1057; (b) Brettle, R.;
Dunmur, D. A.;Hindley, N. J.; Marson,C. M. J. Chem. Soc., Chem. Commun. 1992, 411.
18. Lee, J. S.; Velarde-Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem.
2000, 65, 5428.
Acknowledgments
The authors acknowledge the National Science Foundation of
China (Nos. 20702034 and 20725206) for financial support. The
authors also thank the Analytical & Testing Center of Sichuan
University for NMR analysis.