Y. Nagao et al. / Journal of Organometallic Chemistry 611 (2000) 172–177
177
Organic Sulfur Chemistry, Butterworths, London, 1975, pp.
1–17. (c) K.-y. Akiba, T. Kobayashi, S. Arai, J. Am. Chem. Soc.
101 (1979) 5857. (d) A. Kucsman, I. Kapovits, in: F. Bernardi,
I.G. Csizmadia, A. Mangini (Eds.), Organic Sulfur Chemistry:
Theoretical and Experimental Advances, Elsevier, Amsterdam,
1985, pp 191–245 and refs. cited therein. (e) C.W. Perkins, J.C.
Martin, A.J. Arduengo, A. Algeria, J.K. Kochi, J. Am. Chem.
Soc. 107 (1980) 7753. (f) K.-y. Akiba, K. Takee, K. Ohtaka, F.
Iwasaki, J. Am. Chem. Soc. 105 (1983) 6965. (g) K. Ohkata, M.
Ohsugi, K. Yamamoto, M. Ohsawa, and K.-y. Akiba, J. Am.
Chem. Soc. 118 (1996) 6355 and refs. cited therein.
3.5. X-ray crystallographic analysis of compound 9
The single crystals were obtained by recrystallization
from hexane–CH2Cl2. All measurements were made on
a Rigaku RAXIS-IV imaging plate diffractometer with
graphite monochromated Mo–Ka radiation. The data
were corrected using an ꢀ–2q scan technique to a
maximum 2q value of 55.0°. A total of 2680 reflections
was collected. The data were corrected for Lorentz and
polarization effects. A correction for secondary extinc-
tion was applied (coefficient 9.41120×10−7). The
structure was solved by direct methods [15] and ex-
panded using Fourier techniques [16]. The non-hydro-
gen atoms were refined anisotropically. Hydrogen
atoms were included but not refined. The final cycle of
full-matrix least-squares refinement was based on 2013
observed reflections (I\3.00|(I)) and 200 variable
parameters. The maximum and minimum peak on the
final difference Fourier map corresponded to 0.37 and
[2] K. Kobayashi, E. Koyama, K. Namatame, T. Kimura, C.
Kondo, M. Goto, T. Obinata, N. Furukawa, J. Org. Chem. 64
(1999) 3190.
[3] (a) B.M. Goldstein, F. Takusagawa, H.M. Berman, P.C. Srivas-
tava, R.K. Robins J. Am. Chem. Soc. 105 (1988) 7416. (b) P.
Franchetti, L. Cappellacci, M. Grifantini, A. Barzi, G. Nocen-
tini, H. Yang, A. O’Connor, H.N. Jayaram, C. Carrell, B.M.
Goldstein, J. Med. Chem. 38 (1995) 3829 and refs. cited therein.
(c) R. Tanaka, Y. Oyama, S. Imajo, S. Matsuki, M. Ishiguro,
Bioorg. Med. Chem. 5 (1997) 1389. (d) T. Kumagai, S. Tamai,
T. Abe, H. Matsunaga, K. Hayashi, I. Kishi, M. Shiro, Y.
Nagao, J. Org. Chem. 63 (1983) 8145.
[4] (a) Y. Nagao, T. Ikeda, M. Yagi, E. Fujita, M. Shiro, J. Am.
Chem. Soc. 104 (1982) 2079. (b) Y. Nagao, T. Inoue, E. Fujita,
S. Terada, M. Shiro, J. Org. Chem. 48 (1983) 132. (c) Y. Nagao,
T. Inoue, E. Fujita, S. Terada, M. Shiro, Tetrahedron 40 (1984)
1215. (d) Y. Nagao, T. Kumagai, S. Tamai, T. Abe, T.
Kuramoto, S. Aoyagi, Y. Nagase, M. Ochiai, Y. Inoue, E.
Fujita, J. Am. Chem. Soc. 108 (1986) 4673. (e) Y. Nagao, W.-M.
Dai, M. Ochiai, S. Tsukagoshi, E. Fujita, J. Am. Chem. Soc. 110
(1988) 289.
−0.42 e A−3, respectively. All calculations were per-
formed using the TE SAN crystallographic software
,
X
package of Molecular Structure Corporation (1985 and
1999). The crystal data and the selected atom distances,
bond angles, and torsion angles are listed in Tables 1
and 2, respectively.
[5] Y. Nagao, T. Hirata, S. Goto, S. Sano, A. Kakehi, K. Iizuka,
M. Shiro, J. Am. Chem. Soc. 120 (1998) 3104.
4. Supplementary material
[6] Y. Nagao, M. Goto, K. Kida, M. Shiro, Heterocycles 41 (1995)
419.
Complete details have been deposited at the Cam-
bridge Crystallographic Data Centre, CCDC no.
143786 for compound 5 and CCDC no. 143787 for
compound 9. Copies of this information can be ob-
tained free of charge from The Director, CCDC, 12
Union Road, Cambridge CB2 1EZ, UK (Fax: +44-
1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www:
http://www.ccdc.cam.ac.uk).
[7] (a) A.D. Clark, P. Sykes, J. Chem. Soc. C (1971) 103. (b) E.
Fujita, Y. Nagao, K. Seno, S. Takao, T. Miyasaka, M. Kimura,
W.H. Watson, J. Chem. Soc. Perkin Trans I (1981) 914.
[8] Y. Nagao, Y. Hagiwara, Y. Hasegawa, M. Ochiai, T. Inoue, M.
Shiro, E. Fujita, Chem. Lett. (1988) 381.
[9] G.A. Olah, S.C. Narang, Tetrahedron 38 (1982) 2225.
[10] L.P.J. Burton, J.D. White, Tetrahedron Lett. (1980) 3147.
[11] R.S. Glass, L. Adamowicz, J.L. Broeker, J. Am. Chem. Soc. 113
(1991) 1065.
[12] F. Iwasaki, N. Furukawa, Acta Crystallogr. Sect. C 43 (1987) 80.
[13] M. Yasui, S. Murata, F. Iwasaki, N. Furukawa, Bull. Chem.
Soc. Jpn. 68 (1995) 744.
[14] (a) S.M. Johnson, C.A. Maier, I.C. Paul, J. Chem. Soc. B (1998)
1603. (b) M.M. Olmstead, K.A. Williams, W.K. Musker, J. Am.
Chem. Soc. 104 (1982) 5567. (c) J.T. Doi, R.M. Kessler, D.L. de
Leeuw, M.M. Olmstead, W.K. Musker, J. Org. Chem. 48 (1983)
3707. (d) V. Nenajdenko, N.E. Shevchenko, E.S. Balenkova,
Tetrahedron 54 (1970) 5353.
[15] A. Altomare, M.C. Burla, M. Camalli, M. Cascarano, C. Giaco-
vazzo, A. Guagliardi, G. Polidori, J. Appl. Crystallogr. 27 (1994)
435 SIR92.
[16] P.T. Beurskens, G. Admiraal, G. Beurskens, W.O. Bosman, R.
de Gelder, R. Israel, J.M.M. Smits, The DIRDIF-94 Program
System, Technical Report of the Crystallography Laboratory,
University of Nijmegen, The Netherlands, 1994.
Acknowledgements
This work was partly supported by Grant-in-Aid for
Scientific Research on Priority Areas (No. 11120239)
from the Ministry of Education, Science, Sports, and
Culture, Japan.
References
[1] (a) F. Leung, S.C. Nyburg, Can. J. Chem. 49 (1971) 167. (b )
L.K. Hansen, A. Hordvik, L.J. Saethre, in: C.J.M. Stirling (Ed.),
.