that this inhibition occurs even at very low initial concentra-
tions of cDCE.
(4) Davis, J. W.; Carpenter, C. L. Appl. Environ. Microbiol. 1990, 56,
878-3880.
5) Freedman, D. L.; Danko, A. S.; Verce, M. F. Water Sci. Technol.
001, 43, 333-340.
6) Anderson, J. E.; McCarty, P. L. Appl. Environ. Microbiol. 1997,
63, 687-693.
3
(
(
Third, cDCE use is completely inhibited by VC. Preferential
use of a growth substrate prior to consumption of a
nongrowth substrate is different from the more common
pattern of simultaneous consumption of growth substrate
and nongrowth substrate. Another pattern, in which the
nongrowth substrate is consumed preferentially to the growth
substrate, has also been observed (16, 41). Thus, it appears
there is a spectrum of substrate and nongrowth substrate
consumption patterns. VC inhibition of cDCE use is captured
2
(7) Castro, C. E.; Riebeth, D. M.; Belser, N. O. Environ. Toxicol.
Chem. 1992, 11, 749-755.
(
8) Chang, H. L.; Alvarez-Cohen, L. Appl. Environ. Microbiol. 1996,
2, 3371-3377.
9) Dolan, M. E.; McCarty, P. L. Environ. Sci. Technol. 1995, 29,
892-1897.
6
(
1
(10) Dolan, M. E.; McCarty, P. L. Environ. Sci. Technol. 1995, 29,
2741-2747.
(11) Fogel, M. M.; Taddeo, A. R.; Fogel, S. Appl. Environ. Microbiol.
by subterm “K
for all values of S because of the low value of K
inhibition is incorporated in the present model and others
28, 42-45) by subterms “1 + C/ K ” and “1 + S/ K ” in eqs
-3, respectively. However, these terms by themselves were
S
/ (K
S
+ S)” in eq 3, which is essentially zero
S
. Competitive
1
986, 51, 720-724.
(
(
12) Oldenhuis, R.; Vink, R. L. J. M.; Janssen, D. B.; Witholt, B. Appl.
Environ. Microbiol. 1989, 55, 2819-2826.
(
C
S
2
13) Oldenhuis, R.; Oedzes, J. Y.; van der Waarde, J. J.; D. B. Janssen,
D. B. Appl. Environ. Microbiol. 1991, 57, 7-14.
not enough to fully describe the interactions observed
between the substrate and nongrowth substrate. The high
(14) Koziollek, P.; Bryniok, D.; Knackmuss, H. J. Arch. Microbiol.
999, 172, 240-246.
15) Verce, M. F.; Ulrich, R. L.; Freedman, D. L. Environ. Sci. Technol.
001, 35, 4242-4251.
16) Verce, M. F.; Freedman, D. L. Biotechnol. Bioeng. 2001, 71, 274-
85.
1
degree of correlation between k
′ and kinact, indicates that unique estimates may not have
been obtained for these parameters. Nevertheless, the fitted
value for K is comparable to those for methanotrophic
C C
′ and K , as well as between
(
(
k
C
2
C
2
cometabolism of cDCE, based on studies that used a similar
experimental approach (8, 13). Correlation between kinetic
parameters, which has been reported for other models of
cometabolism kinetics (28, 46), was minimized by estimating
(17) Freedman, D. L.; Herz, S. D. Water Environ. Res. 1996, 68, 320-
328.
(18) Freedman, D. L.; Verce, M. F. In In Situ and On-Site Bioreme-
diation; Alleman, B. C., Leeson, A., Eds.; Battelle Press: Co-
lumbus, OH, 1997; Vol. 3, pp 255-260.
k
S,C and K
I
C C
separately from K , k ′, and kinact.
(
19) Hartmans, S.; de Bont, J.; Tramper, J.; Luyben, K. Biotechnol.
Lett. 1985, 7, 383-388.
As there is currently no evidence for aerobic biodegrada-
tion of cDCE as a sole source of carbon and energy, the results
of this study provide a potential explanation for in situ
disappearance of cDCE when the only other significant
substrate available is VC. It is fortuitous that VC-grown MF1
and L1 exhibit their highest cometabolic activity toward cDCE,
because cDCE is the predominant dichloroethene isomer
formed during anaerobic reductive dechlorination and is the
final dechlorination product of several halorespiring organ-
isms (47). The inability of known VC-grown organisms to
biotransform TCE further emphasizes the value of sequential
anaerobic and aerobic conditions for achieving complete in
situ removal of polychlorinated ethenes, especially via
monitored natural attenuation.
(20) Hartmans, S.; de Bont, J. A. M. Appl. Environ. Microbiol. 1992,
58, 1220-1226.
(
(
(
21) Verce, M. F.; Ulrich, R. L.; Freedman, D. L. Appl. Environ.
Microbiol. 2000, 66, 3535-3542.
22) Hartmans, S.; Kaptein, A.; Tramper, J.; de Bont, J. A. M. Appl.
Microbiol. Biotechnol. 1992, 37, 796-801.
23) Janssen, D. B.; Grobben, G.; Hoekstra, R.; Oldenhuis, R.; Witholt,
B. Appl. Microbiol. Biotechnol. 1988, 29, 392-399.
(24) Freedman, D. L.; Gossett, J. M. Appl. Environ. Microbiol. 1989,
5, 2144-2151.
5
(
(
25) Gossett, J. M. Environ. Sci. Technol. 1987, 21, 202-208.
26) Barbin, A.; Br e´ sil, H.; Croisy, A.; Jacquignon, P.; Malaveille, C.;
Montesan, R.; Bartsch, H. Biochem. Biophys. Res. Commun. 1975,
6
7, 596-603.
(27) American Public Health Association. Standard Methods for the
Examination of Water and Wastewater, 18th ed.; APHA: Wash-
ington, DC, 1989.
Acknowledgments
(28) Chang, W.; Criddle, C. S. Biotechnol. Bioeng. 1997, 56, 492-501.
(
29) Smatlak, C. R.; Gossett, J. M.; Zinder, S. H. Environ. Sci. Technol.
Ana Isabel Carvalho, Joana Pinto de Sousa, Paulo Malho
Guedes, Nuno Miguel G. Coelho, and Luis Miguel M. Silva,
Catholic University of Portugal, worked tirelessly to complete
the experiments with the VC-grown enrichment culture. The
assistance of Kim Ivey in the collection of MS data is greatly
acknowledged. Meghna Swamy assisted in the evaluation of
mass transfer effects. This research was supported in part by
a grant from the U.S. Environmental Protection Agency.
1
996, 30, 2850-2858.
(
30) Reichert, P. Concepts Underlying a Computer Program for the
Identification and Simulation of Aquatic Systems; Report No.
CH-8600; Schriftenreihe der EAWAG, Swiss Federal Institute
for Environmental Science and Technology (EAWAG): D u¨ ben-
dorf, Switzerland, 1994.
(
(
(
31) Neter, J.; Kutner, M. H.; Nachtsheim, C. J.; Wasserman, W.
Applied Linear Statistical Models; Irwin: Chicago, IL, 1996.
32) Vlieg, J. E. T. v. H.; de Koning, W.; Janssen, D. B. Appl. Environ.
Microbiol. 1996, 62, 3304-3312.
33) Beck, J. V.; Arnold, K. J. Parameter Estimation in Engineering
and Science; Wiley and Sons: New York, 1977.
Supporting Information Available
The procedures for determining the endogenous decay
coefficient for cometabolic activity, data for evaluating tDCE,
(34) Ensign, S.; Hyman, M.; Arp, D. Appl. Environ. Microbiol. 1992,
8, 3038-3046.
5
(
(
35) Ensign, S. A. Appl. Environ. Microbiol. 1996, 62, 61-66.
36) Hamamura, N.; Page, C.; Long, T.; Semprini, L.; Arp, D. J. Appl.
Environ. Microbiol. 1997, 63, 3607-3613.
1
,1-DCE, and TCE cometabolism by MF1, and the effect of
tDCE, 1,1-DCE, and TCE on the maximum specific rate of VC
metabolism by MF1. This material is available free of charge
via the Internet at http:/ / pubs.acs.org.
(
(
(
37) Kim, Y.; Arp, D. J.; Semprini, L. J. Environ. Eng. 2000, 126, 934-
942.
38) Rasche, M. E.; Hyman, M. R.; Arp, D. J. Appl. Environ. Microbiol.
1
991, 57, 2986-2994.
39) Ely, R. L.; Williamson, K. J.; Hyman, M. R.; Arp, D. J. Biotechnol.
Bioeng. 1997, 54, 520-534.
Literature Cited
(
(
(
1) Cox, E.; Edwards, E.; Lehmicke, L.; Major, D. In Intrinsic
Bioremediation; Hinchee, R. E., Wilson, J. T., Downey, D. C.,
Eds.; Battelle Press: Columbus, OH,1995; pp 223-232.
(40) Vannelli, T.; Logan, M.; Arciero, D. M.; Hooper, A. B. Appl.
Environ. Microbiol. 1990, 56, 1169-1171.
(41) Bagley, D. M.; Gossett, J. M. Appl. Environ. Microbiol. 1995, 61,
3195-3201.
(42) Broholm, K.; Christensen, T. H.; Jensen, B. K. Water Res. 1992,
26, 1177-1185.
(43) Sa e´ z, P. B.; Rittmann, B. E. Biodegradation 1993, 4, 3-21.
2) Edwards, E. A.; Cox, E. E. In In Situ and On-Site Bioremediation;
Alleman, B. C., Leeson, A., Eds.; Battelle Press: Columbus, OH,
1
997; pp 261-265.
3) Bradley, P. M.; Chapelle, F. H. Anaerobe 1998, 4, 81-87.
2
1 7 6
9
ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 36, NO. 10, 2002