Inorganic Chemistry
Article
Selected Spectral Data of TCR-2-Et. 1H NMR (400 MHz,
CDCl3, 298 K): δ 8.65 (d, JHH = 9.2 Hz, 2H), 8.30 (s, 2H), 8.24 (s,
2H), 7.76 (dd, JHH = 8.8, 1.6 Hz, 2H), 7.64 (s, 2H), 7.45 (s, 2H), 7.25
(d, JHH = 6.4 Hz, 2H), 7.19 (d, JHH = 6.4 Hz, 2H), 4.39 (q, JHH = 7.2
Hz, 4H), 4.06 (q, JHH = 7.2 Hz, 4H), 1.38 (s, 18H), 1.36−1.34 (m,
6H), 1.26−1.22 (m, 6H). 19F NMR (376 MHz, CDCl3, 298 K): δ
−59.89 (s, 6F).
AUTHOR INFORMATION
Corresponding Authors
Notes
■
The authors declare no competing financial interest.
Synthesis of TCR-1. TCR-1-Et (100 mg, 0.08 mmol) was
dissolved in a mixed acetone (30 mL) and 2 M NaOH(aq) solution
(2 mL). After stirring for 8 h, the solvent was evaporated under
vacuum and the residue was dissolved in 10 mL of H2O and titrated
with 2 N HCl to pH 3 to induce a black precipitation. This black
product was washed with a small amount of deionized water and
acetone in sequence, to yield TCR-1 (69 mg, 76%). Another Ru(II)
derivative, TCR-2, was synthesized by hydrolysis of the obtained TCR-
2-Et using identical procedures.
ACKNOWLEDGMENTS
■
This work was supported by the Ministry of Science and
Technology, Taiwan, and the computation was executed using
the facility at the National Center for High-Performance
Computing (NCHC).
REFERENCES
Selected Spectral Data of TCR-1. MS (FAB, 102Ru): m/z 1189.1
■
1
(M + 1)+. H NMR (400 MHz, d6-DMSO, 298 K): δ 9.07 (s, 2H),
(1) (a) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.
Chem. Rev. 2010, 110, 6595. (b) Bai, Y.; Mora-Sero,
́
I.; De Angelis, F.;
8.38 (s, 2H), 8.31 (s, 2H), 7.77 (d, JHH = 2.8 Hz, 2H), 7.56 (s, 2H),
Bisquert, J.; Wang, P. Chem. Rev. 2014, DOI: 10.1021/cr400606n.
(2) Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109, 5868.
(3) (a) Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.;
Chang, J. A.; Lee, Y. H.; Kim, H.-J.; Sarkar, A.; Nazeeruddin, M. K.;
Gratzel, M.; Seok, S. I. Nat. Photonics 2013, 7, 486. (b) Eperon, G. E.;
Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H.
J. Energy Environ. Sci. 2014, 7, 982.
7.48 (d, JHH = 5.6 Hz, 2H), 7.13 (d, JHH = 6.0 Hz, 2H), 6.97 (d, JHH
=
2.8 Hz, 2H), 2.82 (t, JHH = 7.2 Hz, 4H), 1.64−1.62 (m, 4H), 1.31−
1.26 (m, 12H), 0.85−0.83 (m, 6H). 19F NMR (376 MHz, d6-DMSO,
298 K): δ −58.16 (s, 6F). Anal. Calcd for C52H46F6N8O8RuS2·2H2O:
C, 50.93; N, 9.14; H, 4.11. Found: C, 50.65; N, 9.16; H, 4.09.
Selected Spectral Data of TCR-2. MS (FAB, 102Ru): m/z 1069.9
1
(M + 1)+. H NMR (400 MHz, d6-DMSO, 298 K): δ 8.97 (s, 2H),
(4) (a) Nazeeruddin, M. K.; Pec
M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.;
́
hy, P.; Renouard, T.; Zakeeruddin, S.
8.79 (d, JHH = 8.8 Hz, 2H), 8.72 (s, 2H), 7.87 (d, JHH = 9.2 Hz, 2H),
7.83 (s, 2H), 7.77 (s, 2H), 7.56 (d, JHH = 6.8 Hz, 2H), 7.05 (d, JHH
=
6.4 Hz, 2H), 1.36 (s, 18H). 19F NMR (376 MHz, d6-DMSO, 298 K): δ
−57.93 (s, 6F). Anal. Calcd for C48H38F6N8O4Ru·3H2O: C, 51.29; N,
9.97; H, 3.95. Found: C, 51.49; N, 9.82; H, 4.12.
Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J.
̈
Am. Chem. Soc. 2001, 123, 1613. (b) Chiba, Y.; Islam, A.; Watanabe,
Y.; Komiya, R.; Koide, N.; Han, L. Jpn. J. Appl. Phys. 2006, 45, L638.
(c) Chen, B.-S.; Chen, K.; Hong, Y.-H.; Liu, W.-H.; Li, T.-H.; Lai, C.-
H.; Chou, P.-T.; Chi, Y.; Lee, G.-H. Chem. Commun. 2009, 5844.
(5) (a) Yen, Y.-S.; Chou, H.-H.; Chen, Y.-C.; Hsu, C.-Y.; Lin, J. T. J.
Mater. Chem. 2012, 22, 8734. (b) Zhang, M.; Wang, Y.; Xu, M.; Ma,
W.; Li, R.; Wang, P. Energy Environ. Sci. 2013, 6, 2944. (c) Liang, M.;
Chen, J. Chem. Soc. Rev. 2013, 42, 3453.
Device Fabrication. TCR-1 and TCR-2 sensitizers were selected
for fabrication of the DSCs using a standard method, for which the
mesoporous TiO2 photoanode was screen-printed on an FTO glass
using a 15 μm adsorbing layer (20 nm) and a 7 μm light-scattering
layer (400 nm). For preparation of the dye solution, the sensitizer (0.3
mM) was dissolved in a mixture of EtOH and DMSO (v/v, 4/1),
along with the addition of 0.6 mM DCA as coadsorbate for
suppressing aggregation. The electrolyte consists of 0.6 M PMII,
0.03 M I2, 0.1 M guanidinium thiocyanate (GuNCS), 0.1 M t-BP, and
0.2 M LiI in a mixture of acetonitrile and valeronitrile (v/v, 85/15).
The dye loading is estimated from the relative ratio of the MLCT
absorption band of the desorbed dye versus the reference solution in
0.01 mM; both are in mixed MeOH and water (v/v, 1:1) with addition
of 0.1 M TBAOH. The solar cells were covered with a black metal
mask with an aperture (0.4 × 0.4 cm2) to define the active area during
measurement.
X-ray Crystallography. All single-crystal X-ray diffraction data
were measured on a Bruker Smart CCD diffractometer using λ (Mo
Kα) radiation (λ = 0.71073 Å). The data collection was executed using
the SMART program. Cell refinement and data reduction were made
with the SAINT program. The structure was determined using the
SHELXTL/PC program and refined using full-matrix least-squares.24
All non-hydrogen atoms were refined anisotropically, whereas
hydrogen atoms were placed at the calculated positions and included
in the final stage of refinements with fixed parameters. However,
serious disorders were observed for both the CF3 substituents and the
hexyl appendages of the pyridyl pyrazolate ancillaries, due to the loose
packing of molecules within the crystal lattices.
(6) Qin, C.; Wong, W.-Y.; Han, L. Chem.Asian J. 2013, 8, 1706.
(7) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.;
CurchodBasile, F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger,
U.; Nazeeruddin, M. K.; Gratzel, M. Nat. Chem. 2014, 6, 242.
̈
(8) (a) Chang, S.; Wang, H.; Hua, Y.; Li, Q.; Xiao, X.; Wong, W.-K.;
Wong, W. Y.; Zhu, X.; Chen, T. J. Mater. Chem. A 2013, 1, 11553.
(b) Hua, Y.; Chang, S.; Huang, D.; Zhou, X.; Zhu, X.; Zhao, J.; Chen,
T.; Wong, W.-Y.; Wong, W.-K. Chem. Mater. 2013, 25, 2146. (c) Hua,
Y.; Chang, S.; He, J.; Zhang, C.; Zhao, J.; Chen, T.; Wong, W.-Y.;
Wong, W.-K.; Zhu, X. Chem.Eur. J. 2014, 20, 6300.
(9) (a) Chen, K.; Hong, Y.-H.; Chi, Y.; Liu, W.-H.; Chen, B.-S.;
Chou, P.-T. J. Mater. Chem. 2009, 19, 5329. (b) Hewat, T.; McDonald,
S.; Lee, J.; Rahman, M.; Cameron, P.; Hu, F.-C.; Chi, Y.; Yellowlees, L.
J.; Robertson, N. RSC Adv. 2014, 4, 10165.
(10) (a) Yang, S.-H.; Wu, K.-L.; Chi, Y.; Cheng, Y.-M.; Chou, P.-T.
Angew. Chem., Int. Ed. 2011, 50, 8270. (b) Funaki, T.; Funakoshi, H.;
Kitao, O.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Sayama, K.;
Sugihara, H. Angew. Chem., Int. Ed. 2012, 51, 7528. (c) Wu, K.-L.;
Li, C.-H.; Chi, Y.; Clifford, J. N.; Cabau, L.; Palomares, E.; Cheng, Y.-
M.; Pan, H.-A.; Chou, P.-T. J. Am. Chem. Soc. 2012, 134, 7488.
(d) Numata, Y.; Singh, S. P.; Islam, A.; Iwamura, M.; Imai, A.; Nozaki,
K.; Han, L. Adv. Funct. Mater. 2013, 23, 1817. (e) Chou, C.-C.; Hu, F.-
C.; Yeh, H.-H.; Wu, H.-P.; Chi, Y.; Clifford, J. N.; Palomares, E.; Liu,
S.-H.; Chou, P.-T.; Lee, G.-H. Angew. Chem., Int. Ed. 2014, 53, 178.
(11) (a) Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.;
Meyer, G. J. Inorg. Chem. 1994, 33, 5741−5749. (b) Dai, F.-R.; Wu,
W.-J.; Wang, Q.-W.; Tian, H.; Wong, W.-Y. Dalton Trans. 2011, 40,
2314.
ASSOCIATED CONTENT
* Supporting Information
■
S
X-ray structural data of ester derivative TCR-1-Et in CIF
format. Synthetic procedures for 4,4′,5,5′-tetraethoxycarbonyl-
2,2′-bipyridine, experimental details for TDDFT and DFT
computation, electrochemistry and photovoltaic character-
ization, and computational results and UV/vis spectral analyses
of both TCR-1 and TCR-2. This material is available free of
(12) Geary, E. A. M.; Yellowlees, L. J.; Jack, L. A.; Oswald, I. D. H.;
Parsons, S.; Hirata, N.; Durrant, J. R.; Robertson, N. Inorg. Chem.
2004, 44, 242.
(13) (a) Zong, R.; Wang, D.; Hammitt, R.; Thummel, R. P. J. Org.
Chem. 2005, 71, 167−175. (b) Haberecht, M. C.; Schnorr, J. M.;
F
dx.doi.org/10.1021/ic501178f | Inorg. Chem. XXXX, XXX, XXX−XXX