Supramolecular Chemistry
131
References
1
(a) Amendola, V.; Fabbrizzi, L.; Licchelli, M.; Mangano, C.;
Pallavicini, P. Acc. Chem. Res. 2001, 34, 488–493, (b)
Nolan, E.M.; Lippard, S.J. Acc. Chem. Res. 2009, 42, 193–
0.8
0.6
0.4
0.2
0.0
2
03; (c) Czarnik, A.W., Ed. Fluorescent Chemosensors for
Ions and Molecule Recognition; American Chemical Society:
Washington, DC, 1992; (d) de Silva, A.P.; Fox, D.B.; Huxley,
A.J.M.; Moody, T.S. Coord. Chem. Rev. 2000, 205, 41–57;
(
3
e) Quang, D.T.; Kim, J.S. Chem. Rev. 2007, 107, 3780–
799.
2
(a) Mckeown-Eyssen, G.E.; Ruedy, J.; Neims, A. Am.
J. Epidemol. 1983, 118, 470–479, (b) Davidson, P.W.; Myers,
G.J.; Cox, C.; Shamlaye, C.F.; Marsh, D.O.; Tanner, M.A.;
Berlin, M.; Sloane-Reeves, J.; Cernichiari, E.; Choisy, O.;
Choi, A.; Clarkson, T.W. Neurotoxicology 1995, 16, 677–
688; (c) Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.
Environ. Res. 1998, 77, 165–172.
C0(II) Zn(II) Mg(II) Hg(II) Cu(II) Ag(I) Cd(II) Ni(II) Pb(II)
Guests
3 (a) Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Liu,
H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313–2316, (b)
Zhu, M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.;
Li, Y.; Wang, S.; Zhu, D. Org. Lett. 2004, 6, 1489–1492; (c)
Chen, K.-H.; Lu, C.-Y.; Cheng, H.-J.; Chen, S.-J.; Hu, C.-H.;
Wu, A.-T. Carbohydr. Res. 2010, 345, 2557–2561; (d) Hu, J.;
Zhang, M.; Yu, L.B.; Ju, Y. Bioorg. Med. Chem. Lett. 2010,
Figure 10. Change in fluorescence ratio of
(c ¼ 2.22 £ 10 M) at 418 nm upon addition of a particular
metal ion in 10 equiv. amounts in DMSO:H O (5:95, v/v).
1
2
5
2
2
Chem. 2011, 50, 7066–7073; (f) Beer, P.D. Chem. Soc. Rev.
0, 4342–4345; (e) Thakur, A.; Sardar, S.; Ghosh, S. Inorg.
In conclusion, this study demonstrates an easy
synthesis of simple chemosensor 1 that selectively
1
2
989, 18, 409–450; (g) Czarnik, A.W. Acc. Chem. Res. 1994,
7, 302–308; (h) Cheung, S.-M.; Chan, W.-H. Tetrahedron
2þ
recognises Hg ion with measurable binding constant
value over a series of other metal ions by exhibiting a high
ratiometric change in both absorption and emission in
CHCl /CH OH (1:1, v/v) solvent. The ratiometric
2006, 62, 8379–8383; (i) Nolan, E.M.; Lippard, S.J. Chem.
Rev. 2008, 108, 3443–3480; (j) Kim, H.N.; Lee, M.H.; Kim,
H.J.; Kim, J.S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465–
3
3
1472; (k) Wang, J.; Qian, X.; Cui, J. J. Org. Chem. 2006, 71,
4308–4311; (l) Coskun, A.; Yilmaz, M.D.; Akkaya, E.U.
fluorescent response via conformational switching of
piperazine scaffold is convenient in the present case for the
Org. Lett. 2007, 9, 607–609; (m) Cabellero, A.; Espinosa, A.;
Tarraga, A.; Molina, P. J. Org. Chem. 2008, 73, 5489–5497;
(n) Choi, M.G.; Ryu, D.H.; Jeon, J.L.; Cha, S.; Cho, J.; Joo,
H.H.; Hong, K.S.; Lee, C.; Ahn, S.; Chang, S.-K. Org. Lett.
2
þ
2þ
2þ
selective detection of Hg ion from Zn , Cd and other
metal ions taken in the study. Although there are examples
2þ
for ratiometric sensors of Hg (5), the present example
demands its merit for its simplicity in design and better
response. Indeed, this simple quinoline–piperazine con-
jugate is an elegant example of PET sensor like other
reported quinoline-based receptors (13) for chemosensing
2
2
008, 10, 3717–3720; (o) Wang, J.; Liu, B. Chem. Commun.
008, 4759–4761; (p) Zhao, Y.; Zheng, B.; Du, J.; Xiao, D.;
Yang, L. Talanta 2011, 85, 2194–2201; (q) Shiraishi, Y.;
Sumiya, S.; Kohno, Y.; Hirai, T. J. Org. Chem. 2008, 73,
8571–8574; (r) Lee, M.H.; Wu, J.-S.; Lee, J.W.; Jung, J.H.;
Kim, J.S. Org. Lett. 2007, 9, 2501–2504; (s) Zhang, J.F.;
Kim, J.S. Anal. Sci. 2009, 25, 1271–1281 and references
cited therein; (t) Suresh, M.; Ghosh, A.; Das, A. Chem.
Commun. 2008, 3906–3908; (u) Soh, J.H.; Swamy, K.M.K.;
Kim, S.K.; Kim, S.; Lee, S.H.; Yoon, J. Tetrahedron Lett.
2007, 48, 5966–5969; (v) Kim, J.S.; Lee, S.Y.; Yoon, J.;
Vicens, J. Chem. Commun. 2009, 4791–4802; (w) Suresh,
M.; Ghosh, A.; Das, A. Chem. Commun. 2008, 3906–3908;
2
þ
of Hg ions. In high-water-content semi-aqueous system
(
DMSO:H O ¼ 5:95, v/v), the chemosensor 1 also
2
2
þ
efficiently recognised Hg ion from the other ions by
exhibiting quenching of emission to the considerable
extent and validated the working ability of the receptor in
aqueous system. Further exploration along this direction is
underway in our laboratory.
(
x) Suresh, M.; Shrivastav, A.; Mishra, S.; Suresh, E.; Das, A.
Org. Lett. 2008, 10, 3013–3016; (y) Suresh, M.; Mishra, S.;
Mishra, S.K.; Suresh, E.; Mandal, A.K.; Shrivastav, A.; Das,
A. Org. Lett. 2009, 11, 2740–2743; (z) Kim, H.N.; Ren,
W.X.; Kim, J.S.; Yoon, J. Chem. Soc. Rev. 2012, 41, 3210–
3244.
(a) Suresh, M.; Mandal, A.K.; Saha, S.; Suresh, E.; Manodoli,
A.; Di Liddo, R.; Pamigotto, P.P.; Das, A. Org. Lett. 2010, 12,
Supplementary data
Figures showing the change in absorption and fluorescence
þ
2
spectra of 1 and 2 with the metal ions, Job plots for Zn
2
,
and Hg ions, selectivity test, experimental
þ
2þ
Cd
procedures are available.
4
5406–5409, (b) Mahato, P.; Ghosh, A.; Saha, S.; Mishra, S.;
Mishra, S.K.; Das, A. Inorg. Chem. 2010, 49, 11485–11492;
(
(
c) Guo, C.; Irudayaraj, J. Anal. Chem. 2011, 83, 2883–2889;
d) Mitra, A.; Mittal, A.K.; Rao, C.P. Chem. Commun. 2011,
Acknowledgements
D.T. thanks CSIR, Government of India for a fellowship. K.G.
thanks DST, Government of India for providing facilities in the
department under FIST programme.
2565–2567; (e) Wu, Y.; Jing, H.; Dong, Z.; Zhao, Q.; Wu, H.;
Li, F. Inorg. Chem. 2011, 50, 7412–7420; (f) Saha, S.;
Mahato, P.; Reddy, G.U.; Suresh, E.; Chakrabarty, A.;