Paper
Journal of Materials Chemistry C
Fig. 13b is considered to be the origin of the high mobility. For 11 D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran,
Cy8-NTCDI, however, the molecular planes are not exactly
W. G. Ahearn, D. M. Meyer and J. T. Carey, Chem. Mater.,
2008, 20, 7486.
12 C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater.,
˚
parallel to each other, and the so obtained D ¼ 3.36 A does not
x
exactly correspond to the stable geometry.
2002, 14, 99.
13 M. Mas-Torrent and C. Rovira, Chem. Rev., 2011, 111, 4833.
Conclusions
14 S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward and
M. F. Toney, J. Am. Chem. Soc., 2004, 126, 4084.
Although the stacking manner of NTCDI and PTCDI molecules
has a large degree of freedom owing to the large aromatic
planes, the molecular packing is, in many cases, a one-dimen-
sional p-stacking structure. However, the present cycloalkyl-
NTCDIs realize the two-dimensional brickwork structure, where
two molecules are equivalently located on the top of a molecule.
Among the brickwork packings, the displacement along the
1
1
1
1
1
5 E. Hadicke and F. Graser, Acta Crystallogr., Sect. C: Cryst.
Struct. Commun., 1986, 42, 189.
6 P. M. Karmaisier and R. Hoffmann, J. Am. Chem. Soc., 1984,
116, 9684.
7 Y. Geng, J. P. Wang, S. X. Wu, H. B. Li, F. Yu, G. C. Yang,
H. Z. Gao and Z. M. Su, J. Mater. Chem., 2011, 21, 134.
8 Y. Geng, S. X. Wu, H. B. Li, X. D. Tang, Y. Wu, Z. M. Su and
Y. Liao, J. Mater. Chem., 2011, 21, 15558.
9 D. Shukla and M. Rajeswaran, Acta Crystallogr., Sect. E:
Struct. Rep. Online, 2008, 64, o1735.
x
molecular long axis (D ) is the crucial factor that determines the
transistor performance. The mobility shows a maximum at Cy6-
˚
NTCDI near D ¼ 0 A, and the order of the mobility is exactly the
x
same as that of the d-spacing in XRD. Cy6-NTCDI has the largest
2
2
0 S. P. Adiga and D. Shukla, J. Phys. Chem. C, 2010, 114, 2751.
1 Y. Miyake, T. Nagata, H. Tanaka, M. Yamazaki, M. Ohta,
R. Kokawa and T. Ogawa, ACS Nano, 2012, 6, 3876.
2 M. Ichikawa, Y. Yokota, H. Jeon, G. R. Banoukepa, N. Hirata
and N. Oguma, Org. Electron., 2013, 14, 516.
d-spacing, which is associated with the small displacement D
and the molecular long axis nearly perpendicular to the
substrate. Small displacement D is also important because
x
x
2
the perpendicular arrangement minimizes the mist between
the domain boundaries.
2
2
3 H. Kojima and T. Mori, Bull. Chem. Soc. Jpn., 2011, 84, 1049.
4 A. Rademacher, S. Maerkle and H. Landhals, Chem. Ber.,
1
988, 115, 2927.
Acknowledgements
2
5 H. Usta, C. Risko, Z. Wang, H. Huang, M. K. Deliomeroglu,
A. Zhukhovitskiy, A. Facchetti and T. J. Marks, J. Am. Chem.
Soc., 2009, 131, 5586.
6 B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, J.
Am. Chem. Soc., 2007, 129, 15259.
The authors are grateful to Prof. Kakimoto for NMR, UV-vis and
AFM measurement and to Tokyo Institute of Technology Center
for Advanced Materials Analysis for XRD measurement.
2
2
7 K. E. Heusler and S. Trasatti, Pure Appl. Chem., 1986, 58, 955.
8 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,
E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi,
J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam,
M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and
D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc.,
Wallingford CT, 2009.
2
References
1
X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner,
M. R. Wasielewski and S. R. Marder, Adv. Mater., 2011, 23,
268.
2
3
4
5
6
7
8
9
C. R. Newman, C. F. Frisbie, D. A. da Silva Filho, J.-L. Bredas,
P. C. Ewbank and K. R. Mann, Chem. Mater., 2004, 16, 4436.
B. J. Jung, N. J. Tremblay, M.-L. Yeh and H. E. Katz, Chem.
Mater., 2011, 23, 568.
J. G. Laquindanum, H. E. Katz, A. Dodabalapur and
A. J. Lovinger, J. Am. Chem. Soc., 1996, 118, 11331.
H. E. Katz, J. Johnson, A. J. Lovinger and W. Li, J. Am. Chem.
Soc., 2000, 122, 7787.
H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist,
W. Li, Y.-Y. Lin and A. Dodabalapur, Nature, 2000, 404, 478.
K. C. See, C. Landis, A. Sarjeant and H. E. Katz, Chem. Mater.,
2008, 20, 3609.
B. J. Jung, J. Sun, T. Lee, A. Sarjeant and H. E. Katz, Chem.
Mater., 2009, 21, 94.
D. K. Hwang, R. R. Dasari, M. Fenoll, V. Alain-Rizzo, 29 J. P. Lowe, J. Am. Chem. Soc., 1980, 102, 1262.
A. Dindar, J. W. Shim, N. Deb, C. Fuentes-Hernandez, 30 B. A. Jones, M. J. Ahrens, M.-H. Yoon, A. Facchetti,
S. Barlow, D. G. Bucknall, P. Audebert, S. R. Marder and
B. Kippelen, Adv. Mater., 2012, 24, 4445.
T. J. Marks and M. R. Wasielewski, Angew. Chem., Int. Ed.,
2004, 43, 6363.
10 H. Luo, Z. Cai, L. Tan, Y. Guo, G. Yang, Z. Liu, G. Zhang, 31 A. S. Molinari, H. Alves, Z. Chen, A. Facchetti and
D. Zhang, W. Xu and Y. Liu, J. Mater. Chem. C, 2013, 1, 2688. A. Morpurgo, J. Am. Chem. Soc., 2009, 131, 2462.
This journal is ª The Royal Society of Chemistry 2013
J. Mater. Chem. C, 2013, 1, 5395–5401 | 5401