3
86
J . Org. Chem. 1996, 61, 386-388
1
Ta ble 1. H NMR P a tter n s for Dicyclop en ta p yr en es 1, 2,
Syn th esis a n d Ch a r a cter iza tion of th e
a n d 3a
Th r ee Dicyclop en ta p yr en es1
average chemical shiftsb
Lawrence T. Scott* and Atena Necula
compd
6-membered rings
5-membered rings
1
2
3
8.26
7.55
7.58
7.35
6.66
6.91
Department of Chemistry, Merkert Chemistry Center,
Boston College, Chestnut Hill, Massachusetts 02167-3860
Received September 5, 1995
a
Measured in CDCl3. b In ppm downfield from tetramethylsi-
lane.
Polycyclic aromatic hydrocarbons containing fully un-
saturated five-membered rings as integral components
of their trigonal carbon networks (CP-PAHs) have at-
Several years ago, we extended the synthetic utility of
this method by introducing the 1-chlorovinyl side chain
as a superior “masked ethynyl group” for flash pyrolyses
tracted considerable attention recently in a variety of
scientific circles.2
-10
Some of these novel nonalternant
(
Scheme 1) and exploited this technology in a three-step
hydrocarbons exhibit unusual photophysical behavior,
1
2
3
synthesis of corannulene. We have subsequently em-
ployed the same methodology for the synthesis of numer-
ous CP-PAHs,1 including those reported here, and other
workers have adopted our method to prepare such
e.g., anomalous fluorescence, and/or pronounced biologi-
4
cal activity, e.g., acute cyctotoxicity. Many have been
,7
identified or are believed to be formed as products of
5
incomplete combustion, either in flames or in cigarette
1
3
6
compounds as cyclopentapyrene and a C30
H12 double
smoke, and a few have been produced by flash pyrolyses
corannulene.14
of other hydrocarbons.7,8 Five-membered rings fully
encircled by benzene rings impart a curvature to the
Friedel-Crafts acylation of pyrene with excess acetyl
chloride and aluminum chloride in carbon disulfide gives
1,3-diacetylpyrene (4), 1,6-diacetylpyrene (5), and 1,8-
diacetylpyrene (6), all of which can be isolated in usable
quantities through a combination of crystallization and
chromatographic purification methods.15 Separate treat-
trigonal carbon network that gives rise to the bowl-
shaped geometry of corannulene9 and to the closed
polyhedral surfaces of the fullerenes.10 Herein we report
the syntheses and a preliminary spectroscopic examina-
tion of the three isomeric dicyclopentapyrenes 1, 2, and
1
5
ment of each diketone with PCl in dichloromethane at
3
, all of which were unknown until now. The H NMR
room temperature gives the corresponding bis(1-chlo-
rovinyl)pyrenes 7, 8, and 9, and flash vacuum pyrolysis
of these at 1000 °C/0.75-1.0 mmHg in separate experi-
ments gives the title compounds 1, 2, and 3, respectively
properties of isomer 1 differ markedly from those of 2
and 3 (Table 1).
(
Scheme 2).
1
A full listing of all the H NMR chemical shifts and
coupling constants for the title compounds can be found
together with the 13C NMR data in the Experimental
1
Section; however, the striking difference in the gross H
NMR spectroscopic properties of isomer 1 vis- a` -vis those
of 2 and 3 (Table 1) deserves comment. Even a casual
inspection of the NMR spectra reveals that the reso-
nances of all the hydrogens in 2 and 3 are shifted upfield
The key step in our syntheses takes advantage of the
intramolecular trapping of vinylidenes generated ther-
mally from terminal acetylenes, a powerful method for
1
1
(8) Neilen, R. H. G.; Wiersum, U. E. J anssen Chim. Acta 1992, 10,
ring construction first reported by R. F. C. Brown.
3
1
. Brown, R. F. C.; Eastwood, F. W.; Wong, N. R. Tetrahedron Lett.
993, 34, 3607-8. Brown, R. F. C.; Choi, N.; Coulston, K. J .; Eastwood,
F. W.; Wiersum, U. E.; J enneskens, L. W. Tetrahedron Lett. 1994, 35,
4405-8.
(1) Presented at the Symposium on Synthetic Hydrocarbon Chem-
istry, Loker Hydrocarbon Research Institute, University of Southern
California, Los Angeles, December, 1994, and at the Eighth Interna-
tional Symposium on Novel Aromatic Compounds, Braunschweig,
Germany, August, 1995.
(9) Lawton, R. G.; Barth, W. E. J . Am. Chem. Soc. 1971, 93, 1730-
45. Hanson, J . C.; Nordman, C. E. Acta Crystallogr., Sect. B 1976, B32,
1147-53. Scott, L. T.; Hashemi, M. M.; Bratcher, M. S. J . Am. Chem.
Soc. 1992, 114, 1920-1. Borchardt, A.; Fuchicello, A.; Kilway, K. V.;
Baldridge, K. K.; Siegel, J . S. J . Am. Chem. Soc. 1992, 114, 1921-3.
Siegel, J . S.; Seiders, T. J . Chem. Br. 1995, 313-316.
(10) Curl, R. F.; Smalley, R. E. Sci. Am. 1991, 265, 54-63. Kroto,
H. W.; Allaf, A. W.; Balm, S. P. Chem. Rev. 1991, 91, 1213-35. Kroto,
H. W. Angew. Chem. 1992, 104, 113-33 (See also Angew. Chem., Int.
Ed. Engl. 1992, 31 (2), 111-29). Billups, W. E., Ciufolini, M. A., Eds.
Buckminsterfullerenes; VCH: New York, 1993. Hirsch, A. Chemistry
of the Fullerenes; Thieme: Stuttgart, Germany, 1994.
(11) Brown, R. F. C.; Harrington, K. J .; McMullen, G. L. J . Chem.
Soc., Chem. Commun. 1974, 123-4. Brown, R. F. C.; Eastwood, F. W.;
J ackman, G. P. Aust. J . Chem. 1977, 30, 1757-67. Brown, R. F. C.
Recl. Trav. Chim. Pays-Bas 1988, 107, 655-61. Brown, R. F. C. Pure
Appl. Chem. 1990, 62, 1981-6. Brown, R. F. C.; Eastwood, F. W.
Synlett 1993, 9-19.
(12) Scott, L. T.; Cheng, P.-C.; Bratcher, M. S. Eighth International
Symposium on Novel Aromatic Compounds, Victoria, British Columbia,
Canada, J uly 19-24, 1992; Abstract No. 64. Cheng, P.-C. M.S. Thesis,
University of Nevada, Reno, 1992.
(13) Sarobe, M.; Zwikker, J . W.; Snoeijer, J . D.; Wiersum, U. E.;
J enneskens, L. W. J . Chem. Soc., Chem. Commun. 1994, 89-90.
(14) Rabideau, P. W.; Abdourazak, A. H.; Folsom, H. J . Am. Chem.
Soc. 1994, 116, 7891-2.
(15) Harvey, R. G.; Pataki, J .; Lee, H. Org. Prep. Proced. Int. 1984,
16, 144-8.
(
2) Plummer, B. F.; Steffen, L. K.; Herndon, W. C. Struct. Chem.
993, 4, 279-85. Tucker, S. A.; Acree, W. E., J r.; Fetzer, J . C.; Harvey,
R. G.; Tanga, M. J .; Cheng, P.-C.; Scott, L. T. Appl. Spectrosc. 1993,
1
4
7, 715-22.
(
3) Plummer, B. F.; Al-Saigh, Z. Y. J . Phys. Chem. 1983, 87, 1579-
8
1
9
2. Plummer, B. F.; Al-Saigh, Z. Y.; Arfan, M. Chem. Phys. Lett. 1984,
04, 389-92. Plummer, B. F.; Singleton, S. F. J . Phys. Chem. 1990,
4, 7363-6.
(4) Cavalieri, E.; Rogan, E.; Toth, B.; Munhall, A. Carcinogenesis
1
1
981, 2, 277-81. Raveh, D.; Slaga, T. J .; Huberman, E. Carcinogenesis
982, 3, 763-6.
(5) Lam, F. W.; Howard, J . B.; Longwell, J . P. Chem. Phys. Processes
Combust. 1987, 93, 1-93. Pope, C. J .; Marr, J . A.; Howard, J . B. J .
Phys. Chem. 1993, 97, 11001-13. Lafleur, A. L.; Howard, J . B.; Marr,
J . A.; Yadav, T. J . Phys. Chem. 1993, 97, 13539-43. Marr, J . A.;
Giovane, L. M.; Longwell, J . P.; Howard, J . B.; Lafleur, A. L. Combust.
Sci. Technol. 1994, 101, 301-9.
(
6) Lam, J .; Pedersen, B. O.; Thomasen, T. Beitr. Tabakforsch. Int.
1
8
985, 13, 1-9. Mitra, S.; Wilson, N. K. Environ. Int. 1992, 18, 477-
7.
(
7) Necula, A.; Scott, L. T. Unpublished results presented at the
Northeast Regional Meeting of the American Chemical Society, Bur-
lington, VT, J une 19-21, 1994. Necula, A.; Scott, L. T. Unpublished
results presented at the National Meeting of the American Chemical
Society, Washington, DC, August 21-26, 1994.
0
022-3263/96/1961-0386$12.00/0 © 1996 American Chemical Society