Organic Letters
Letter
57, 12489. (c) Xu, G.; Chen, P.; Liu, P.; Tang, S.; Zhang, X.; Sun, J.
Angew. Chem., Int. Ed. 2019, 58, 1980.
moderate yields (5q−5s). The structures of 5q and 5s were
determined by X-ray diffraction.
(4) (a) Wang, Y.; Ye, L.; Zhang, L. Chem. Commun. 2011, 47, 7815.
(b) Wang, Y.; Liu, L.; Zhang, L. Chem. Sci. 2013, 4, 739. (c) Chen, J.-
M.; Chang, C.-J.; Ke, Y.-J.; Liu, R.-S. J. Org. Chem. 2014, 79, 4306.
(d) Huple, D. B.; Mokar, B. D.; Liu, R.-S. Angew. Chem., Int. Ed. 2015,
54, 14924. (e) Mokar, B. D.; Huple, D. B.; Liu, R.-S. Angew. Chem.,
Int. Ed. 2016, 55, 11892. (f) Raj, A. S. K.; Kale, B. S.; Mokar, B. D.;
Liu, R.-S. Org. Lett. 2017, 19, 5340. (g) Hsu, Y.-C.; Hsieh, S.-A.; Li,
P.-H.; Liu, R.-S. Chem. Commun. 2018, 54, 2114.
(5) Eftekhari-Sis, B.; Zirak, M. Chem. Rev. 2017, 117, 8326.
(6) Huang, H.; Wang, Y.; Chen, Z.; Hu, W. Adv. Synth. Catal. 2005,
347, 531.
(7) Mandler, M. D.; Truong, P. M.; Zavalij, P. Y.; Doyle, M. P. Org.
Lett. 2014, 16, 740 and references therein .
In summary, we demonstrated a novel rhodium-catalyzed
CN bond formation from the reaction of N-hydroxyanilines
with carbene precursors. DFT calculations indicate that this
transformation occurs through a “rebound hydrolysis”
mechanism. Moreover, based on the novel imine formation,
a three-component reaction to prepare fully substituted β-
lactams was developed. The reaction proceeds through
rhodium-catalyzed imine formation, Wolff rearrangement,
and Staudinger reaction to deliver the final products in high
efficiency.
ASSOCIATED CONTENT
■
́
̀
(8) Tindall, D. J.; Werle, C.; Goddard, R.; Philipps, P.; Fares, C.;
Furstner, A. J. Am. Chem. Soc. 2018, 140, 1884.
S
* Supporting Information
̈
(9) For selected examples on the iminium ion pair, see: (a) Cametti,
M.; Nissinen, M.; Dalla Cort, A.; Mandolini, L.; Rissanen, K. J. Am.
Chem. Soc. 2007, 129, 3641. (b) Khomutova, Y. A.; Smirnov, V. O.;
Mayr, H.; Ioffe, S. L. J. Org. Chem. 2007, 72, 9134. (c) Zuend, S. J.;
Jacobsen, E. N. J. Am. Chem. Soc. 2009, 131, 15358. (d) Moran, A.;
Hamilton, A.; Bo, C.; Melchiorre, P. J. Am. Chem. Soc. 2013, 135,
9091. (e) Hermeke, J.; Mewald, M.; Oestreich, M. J. Am. Chem. Soc.
The Supporting Information is available free of charge on the
Experimental procedures, characterizing data, and copies
Accession Codes
́
́
́
2013, 135, 17537. (f) Calleja, J.; Gonzalez-Perez, A. B.; de Lera, A. R.;
́
́
Alvarez, R.; Fananas, F. J.; Rodríguez, F. Chem. Sci. 2014, 5, 996.
̃
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(10) For examples on the rebound mechanism: (a) Groves, J. T. J.
Chem. Educ. 1985, 62, 928. (b) Mahapatra, S.; Halfen, J. A.; Tolman,
̈
W. B. J. Am. Chem. Soc. 1996, 118, 11575. (c) Schoneboom, J. C.;
Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2004, 126,
4017. (d) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W.
Chem. Rev. 2005, 105, 2279. (e) Haines, B. E.; Nelson, B. M.;
Grandner, J. M.; Kim, J.; Houk, K. N.; Movassaghi, M.; Musaev, D. G.
J. Am. Chem. Soc. 2018, 140, 13375.
AUTHOR INFORMATION
Corresponding Authors
■
(11) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334.
(12) (a) Xu, B.; Zhu, S.-F.; Xie, X.-L.; Shen, J.-J.; Zhou, Q.-L. Angew.
Chem., Int. Ed. 2011, 50, 11483. (b) Wang, X.-C.; Song, X.-S.; Guo,
L.-P.; Qu, D.; Xie, Z.-Z.; Verpoort, F.; Cao, J. Organometallics 2014,
33, 4042. (c) Kisan, H. K.; Sunoj, R. B. Chem. Commun. 2014, 50,
14639. (d) Jindal, G.; Kisan, H. K.; Sunoj, R. B. ACS Catal. 2015, 5,
480.
(13) Liang, Y.; Zhou, H.; Yu, Z.-X. J. Am. Chem. Soc. 2009, 131,
17783.
(14) Xie, Z.-Z.; Liao, W.-J.; Cao, J.; Guo, L.-P.; Verpoort, F.; Fang,
W. Organometallics 2014, 33, 2448.
(15) For a review, see: (a) Kirmse, W. Eur. J. Org. Chem. 2002, 2002,
2193. For selected recent examples on Wolff rearrangement, see:
(b) Rodriguez, K. X.; Kaltwasser, N.; Toni, T. A.; Ashfeld, B. L. Org.
Lett. 2017, 19, 2482. (c) Hu, X.; Chen, F.; Deng, Y.; Jiang, H.; Zeng,
W. Org. Lett. 2018, 20, 6140.
(16) (a) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc.
Chem. Res. 2004, 37, 592. (b) Tuba, R. Org. Biomol. Chem. 2013, 11,
5976. (c) Cossío, F. P.; Arrieta, A.; Sierra, M. A. Acc. Chem. Res. 2008,
41, 925. (d) Fu, N.; Tidwell, T. T. Tetrahedron 2008, 64, 10465.
(e) Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem. Soc. 2006, 128, 6060.
ORCID
Author Contributions
§L.C. and L.Z. contributed equally to this work
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the NSFC (Grants 21572024 and 21572192),
Shenzhen STIC (Grant JCYJ20170412150343516), and
Jiangsu Key Laboratory of Advanced Catalytic Materials &
Technology (Grant BM2012110).
REFERENCES
■
(1) For selected reviews, see: (a) Davies, H. M. L.; Hedley, S. J.
Chem. Soc. Rev. 2007, 36, 1109. (b) Doyle, M. P.; Duffy, R.; Ratnikov,
M.; Zhou, L. Chem. Rev. 2010, 110, 704. (c) Xia, Y.; Qiu, D.; Wang, J.
Chem. Rev. 2017, 117, 13810. (d) Cheng, Q.-Q.; Deng, Y.; Lankelma,
M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425. (e) Zhang, D.; Hu,
W. Chem. Rec. 2017, 17, 739.
(2) For selected reviews, see: (a) Zhu, S.-F.; Zhou, Q.-L. Acc. Chem.
Res. 2012, 45, 1365. (b) Gillingham, D.; Fei, N. Chem. Soc. Rev. 2013,
42, 4918. (c) Ren, Y.-Y.; Zhu, S.-F.; Zhou, Q.-L. Org. Biomol. Chem.
2018, 16, 3087.
(3) (a) Liu, K.; Xu, G.; Sun, J. Chem. Sci. 2018, 9, 634. (b) Wang, K.;
Chen, P.; Ji, D.; Zhang, X.; Xu, G.; Sun, J. Angew. Chem., Int. Ed. 2018,
D
Org. Lett. XXXX, XXX, XXX−XXX