JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY DOI 10.1002/POLA
3 Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S.
behavior of the gels was illustrated in Figure 4. The PEG-
acrylate-based gels continued to swell until the point of ulti-
mate gel disintegration, due to the hydrolysis of its ester bond
and breakdown of the crosslinking points. In contrast, the a-
PEG-MA-based gels reached the equilibrium swelling after
about 3 days and no significant further swelling was observed.
Angew Chem Int Ed 2010, 49, 6288–6308.
4 Abuchowski, A.; Mccoy, J. R.; Palczuk, N. C.; van Es, T.;
Davis, F. F. J Biol Chem 1977, 252, 3582–3586.
5 Roberts, M. J.; Bentley, M. D.; Harris, J. M. Adv Drug Deliv
Rev 2002, 54, 459–476.
To further compare the hydrolysis stability, accelerated
hydrolysis experiments (with 0.2 M NaOH solution) were
done with gels formed between 4arm-PEG-SH and PEG-dia-
crylate (PEG-A), PEG-dimethacrylate (PEG-MA), and our pro-
posed new structure a-PEG-MA. The results (Supporting
Information Fig. S3) showed that PEG-MA gel was more sta-
ble than the PEG-A gel, but our new PEG systems are much
more resistant to hydrolysis than both of the other two.
6 Peppas, N. A.; Keys, K. B.; Torres-Lugo, M.; Lowman, A. M.
J Control Release 1999, 62, 81–87.
7 Lin, C.; Anseth, K. S. Pharm Res 2009, 26, 631–643.
8 Zhu, J. Biomaterials 2010, 31, 4639–4656.
9 Elbert, D. L.; Pratt, A. B.; Lutolf, M. P.; Halstenberg, S.; Hubbell,
J. A. J Control Release 2001, 76, 11–25.
10 Heggli, M.; Tirelli, N.; Zisch, A.; Hubbell, J. A. Bioconjug
Chem 2003, 14, 967–973.
CONCLUSIONS
11 Lutolf, M. P.; Tirelli, N.; Cerritelli, S.; Cavalli, L.; Hubbell, J. A.
An a-PEG-MA structure was proposed and synthesized
through a one-step reaction with high yield (>90%). This
new PEG derivative reacts with thiols in the Michael-type
addition reaction with reactivities comparable with the con-
ventionally-used acrylated PEG. More importantly, the link-
ages of the addition product are hydrolysis-stable and, hence,
suitable for long-term applications such as vitreous replace-
ment and implanted device surface coating. It should be
pointed out that this newly proposed structure is not only
applicable to double- and mono-functionalized PEG, but also
to other polymers with hydroxyl groups such as poly(vinyl
alcohols) and polysaccharides.
Bioconjug Chem 2001, 12, 1051–1056.
12 Patterson, J.; Martino, M. M.; Hubbell, J. A. Mater Today
2010, 13, 14–22.
13 van Tomme, S. R.; Storm, G.; Hennink, W. E. Int J Pharm
2008, 355, 1–18.
14 Lowe, A. B. Polym Chem 2010, 1, 17–36.
15 Schoenmakers, R. G.; van de Wetering, P.; Elbert, D. L.;
Hubbell, J. A. J Control Release 2004, 95, 291–300.
16 Metters, A.; Hubbell, J. Biomacromolecules 2005, 6, 290–
301.
17 Elbert, D. L.; Hubbell, J. A. Biomacromolecules 2001, 2, 430–
This work was supported by the Beijing Municipal Science and
Technology Commission (grant number: Z08000303220801).
441.
18 Morpurgo, M.; Veronese, F. M.; Kachensky, D.; Harris, J. M.
Bioconjug Chem 1996, 7, 363–368.
REFERENCES AND NOTES
19 Lutolf, M. P.; Raeber, G. P.; Zisch, A. H.; Tirelli, N.; Hubbell,
1 Harris, J. M. Poly(ethylene glycol) Chemistry: Biotechnical
J. A. Adv Mater 2003, 15, 888–892.
and Biomedical Applications; Plenum Press: New York, 1992.
2 Goddard, J. M.; Hotchkiss, J. H. Prog Polym Sci 2007, 32,
20 Guthmann, H.; Conole, D.; Wright, E.; Ko¨ rber, K.; Barker, D.;
698–725.
Brimble, M. A. Eur J Org Chem 2009, 1944–1960.
1516
WILEYONLINELIBRARY.COM/JOURNAL/JPOLA