Sum Frequency Generation Study
J. Phys. Chem. B, Vol. 108, No. 39, 2004 15139
This interpretation assumes a delta function distribution and
that the oriented cations do not form more than one monolayer,
that is, a Helmholtz layer at the surface. From previous
electrochemical studies using capacitance and electrocapillarity,
this model is reasonable.53
Acknowledgment. We gratefully appreciate funding for this
project provided by The Welch Foundation (E1531) and The
Petroleum Research Fund (37767.01-G5).
References and Notes
To estimate the coverage of imidazolium on the electrode,
cyclic voltammetry is used. The PZC of 1-ethyl-3-methyl-
imidazolium-BF4 was determined by Koch et al.,53 and found
to be -0.5 V vs Ag/AgCl (∼Ag/AgBF4). By integrating the
double-layer current from PZC to a given potential in the Pt
electrode, the charge accumulation is estimated. For [BMIM]-
[BF4], integration from -0.5 V to 1 V is approximately 2.8 ×
10-4 C/cm2, assuming an atomically flat surface (otherwise a
roughness factor of 2-3 should be applied).25 This charge value
is in agreement with those calculated from differential capaci-
tance. The capacitance at the Hg/[EMIM][BF4] is on the order
of 1 × 10-5 F/cm,2,53 which is a surface charge of about 1 ×
10-4 C, or 0.5 monolayer of electric charge (∼2 × 10-4
C/monolayer). Using this estimate on the amount of surface
charge it seems reasonable to envision that the ions adsorb to
the surface as a single layer and multilayers are not present at
the surface. This is consistent with a Helmholtz model of the
interface.
(1) Seddon, K. R. J. Chem. Technol. Biotech. 1997, 68, 351.
(2) Fuller, J.; Carlin, R. T.; Osteryoung, R. A. J. Electrochem. Soc.
1997, 144, 3881.
(3) Quinn, B. M.; Ding, Z.; Moulton, R.; Bard, A. J. Langmuir 2002,
18, 1734.
(4) Welton, T. Chem. ReV. 1999, 99, 2071.
(5) Suarez, P. A.; Einloft, S.; Dullius, J. E.; Souza, R. F.; Dupont, J.
J. Chim. Phys. 1998, 95, 1626.
(6) Holbrey, J. D.; Seddon, K. R. Clean Products and Processes 1999,
1, 223.
(7) Trulove, P. C.; Mantz, R. A. Electrochemical Properties of Ionic
Liquids. In Ionic Liquids in Synthesis; Welton, T., Wasserscheld, P., Eds.;
Wiley-VCH: Morlenbach, 2003; p 368.
(8) Xiao, L.; Johnson, K. E. J. Electrochem. Soc. 2003, 150, E307.
(9) Suarez, P. A.; Selbach, V. M.; Dullius, J. E.; Einloft, S.; Pianicki,
C. M.; Azambuja, D. S.; deSouza, R. F.; Dupont, J. Electrochim. Acta 1997,
42, 2533.
(10) Doyle, M.; Choi, S. K.; Proulx, G. J. Electrochem. Soc. 2000, 147,
34.
(11) Hagiwara, R.; Hirashige, T.; Tsuda, T.; Ito, Y. J. Electrochem. Soc.
2002, 149, D1.
(12) Bonhote, P.; Dias, A.; Papageorgiou, N.; Kalyanasundaram, K.;
Gra¨tzel, M. Inorg. Chem. 1996, 35, 1168.
The SFG data suggest that at high positive potential the cation,
[BMIM]+, is tipped with the imidazolium ring along the surface
normal and the ring becomes more parallel to the surface at
more negative potentials. This is reasonable since the PZC of
this system is near -500 mV;53 thus, at -800 mV the surface
has a negative charge. Previous results have shown that the
cation charge is mostly centered on the aromatic ring;54,55 thus,
this would be the lowest energy situation considering only the
electrostatic energy. To screen the charge, the ring orients
parallel to the surface. At positive surface charge the anion will
move into the inner Helmholtz layer for charge compensation
and the cation will then occupy the outer Helmholtz layer. This
model suggests that the cation is tipped along the surface normal
to make room for the anion to approach the surface at potentials
positive of PZC. Further, the effect is different for [BF4]-
compared to [PF6]- and is likely due to its size and/or charge
density.
(13) Papageorgiou, N.; Anthanassov, Y.; Armand, M.; Bonhte, P.;
Pettersson, H.; Azam, A.; Gratzel, M. J. Electrochem. Soc. 1996, 143, 3009.
(14) Rogers, R. D.; Huddleston, J. G.; Williauer, H. D.; Swatloski, R.
P.; Visser, A. E. Chem. Commun. 1998, 1765.
(15) Abraham, M. H.; Zissimos, A. M.; Huddleson, J. G.; Willauer, H.
D.; Rogers, R. D.; Acree, W. E. Ind. Eng. Chem. Res. 2003, 42, 413.
(16) Dupont, J.; deSouza, R. F.; Suarez, P. A. Chem. ReV. 2002.
(17) Suarez, P. A.; Dullius, J. E.; Einloft, S.; DeSouza, R. F.; Dupont,
J. Polyhedron 1996, 15, 1217.
(18) Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Inorg.
Chem. 1982, 21, 1263.
(19) Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun.
1992, 965.
(20) Ionic Liquids in Synthesis; Welton, T.; Wasserscheid, P., Eds.;
Wiley-VCH: Morlenbach, 2003, p 364.
(21) Bockris, J. O.; Khan, S. U. M. Surface Electrochemistry, 1st ed.;
Plenum Press: New York, 1993.
(22) Kisza, A. J. Electroanal. Chem. 2002, 534, 99.
(23) Graves, A. D. Electroanal. Chem. 1970, 25, 349.
(24) Graves, A. D.; Inman, D. Electroanal. Chem. 1970, 25, 357.
(25) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.; John
Wiley and Sons: New York, 2001.
There appears to be two slightly differing mechanisms for
cation reorientation at the electrode surface. In the case of
negative surface charge, the imidazolium ring is relatively
parallel to the electrode surface, presumably to screen the surface
charge. However, when the surface charge becomes positive
the ring tips from the surface to allow space for the anion to
enter the Helmholtz layer and shield the electrode charge. For
the [BMIM][BF4] and [BMIM][PF6] ionic liquids this occurs
in two different ways. In the [BMIM][BF4] case, the twist angle
of the ring is not greatly different at the positive and negative
potentials and only the tilt angle changes. However, for [BMIM]-
[PF6] the tilt angle is not changing as a function of potential,
but instead is changing with respect to the twist angle. These
results suggest that [BMIM]+ changes its polar tilt angle (θ) to
allow the anion access to the surface for [BF4]- while it changes
its twist angle to allow [PF6]- access to the surface.
(26) Schmickler, W. Interfacial Electrochemistry, 1st ed.; Oxford
University Press: New York, 1996.
(27) Bockris, J. O.; Reddy, A. K. N. Modern Electrochemistry: Ionics,
2nd ed.; Plenum Press: New York, 1998; Vol. 1.
(28) Devanathan, M. A.; Tilak, B. V. Chem. ReV. 1965, 65, 635.
(29) Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. J.
Mater. Chem. 1998, 8, 2627.
(30) Holbrey, J. D.; Seddon, K. R. J. Chem. Soc., Dalton Trans. 1999,
13, 2133.
(31) Carmicheal, A. J.; Hardacre, C.; Holbrey, J. D.; Seddon, K. R.;
Nieuwenhuyzen, M. Proc. Electrochem. Soc. 2000, 99-41, 209.
(32) Dieter, K. M.; Dymek, C. J.; Heimer, N. E.; Rovang, J. W.; Wilkes,
J. S. J. Am. Chem. Soc. 1988, 110, 2722.
(33) Fannin, A. A.; King, L. A.; Levisky, J. A.; Wilkes, J. S. J. Phys.
Chem. 1984, 88, 2609.
(34) Haung, J. F.; Chen, P. Y.; Sun, I. W.; Wang, S. P. Inorg. Chim.
Acta 2001, 320, 7.
(35) Urahata, S. M.; Ribeiro, M. C. J. Chem. Phys. 2004, 120, 1855.
(36) Morrow, T. I.; Maginn, E. J. J. Phys. Chem. B. 2002, 106, 12807.
(37) Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Phys.
Chem. Chem. Phys. 2001, 3, 5192.
(38) Shultz, M. J.; Baldelli, S.; Schnitzer, C.; Simonelli, D. J. Phys.
Chem. B 2002, 106, 5313.
Conclusion
Sum frequency generation has been used to study the
adsorption and orientation of ions in a room-temperature ionic
liquid at the platinum electrode surface. The results indicate
that the cation has a preferred orientation that changes as a
function of applied potential. At relatively negative surface
charge the imidazolium ring is nearly parallel to the surface,
while it tilts along the surface normal at more positive potential.
(39) Buck, M.; Himmelhaus, M. J. Vac. Sci. Technol., A 2001, 19, 2717.
(40) Huang, J. Y.; Shen, Y. R. Sum Frequency Generation as a Surface
Probe. In Laser Spectroscopy and Photochemistry on Metal Surfaces; Dai,
H. L., Ho, W., Eds.; World Scientific: Singapore, 1995.
(41) Hirose, C.; Yamamoto, H.; Akamatsu, N.; Domen, K. J. Phys.
Chem. 1993, 97, 10064.
(42) Hirose, C.; Akamatsu, N.; Domen, K. Appl. Spectrosc. 1992, 46,
1051.