Within the class of ring-fused isoquinolines, there have
been no reports on the synthesis and biological activity of
imidazoloisoquinolines. However, the related triazoloiso-
quinolines were reported to have some interesting pharma-
ceutical and agricultural properties.5 The berberine,6 emetine,
and related ipecac alkaloids,7 all containing benzo[a]quino-
lizine moieties,8 are reported to possess interesting biological
activities. Several methods for the preparation of the benzo-
[a]quinolizine ring system have been reported in the litera-
ture.9 Benzazocine was found as a structural component of
pentacyclic alkaloids which exhibited highly potent cyto-
toxicity.10 It was also synthesized for biological study as an
eight-membered B-ring of colchicine analogues.11
convenient synthesis of tricyclic imidazoloisoquinolin-3-ones
1, benzo[a]quinolizin-4-ones 2, and benzo[d]azocin-4-ones
3 (Figure 1). To generate heterocyclic structures relevant to
Various 1-substituted dihydroisoquinolines have been used
for the synthesis of benzazocine,12 benzo[a]quinolizines,13
and thiazolo[2,3-a]isoquinolin-3-ones14 related to imidazo-
loisoquinolin-3-ones.
Figure 1. Structures of imidazoloisoquinolin-3-ones 1, benzo[a]-
quinolizin-4-ones 2, and benzo[d]azocin-4-ones 3.
the alkaloid targets, we have investigated the cycloconden-
sation of azlactones with various dihydroisoquinolines, both
unsubstituted and 1-substituted.
Our group has been interested in the synthesis of some
pyrroloisoquinoline alkaloid derivatives.15 We now report a
(2) Audia, J. E.; Drost, J. J.; Nissen, J. S.; Murdoch, G. L.; Evrard, D.
A. J. Org. Chem. 1996, 61, 7937.
(3) (a) Peschko, C.; Winklhofer, C.; Steglich, W. Chem.-Eur. J. 2000,
6, 1147. (b) Heim, A.; Terpin, A.; Steglich, W. Angew. Chem., Int. Ed.
Engl. 1997, 36, 155.
(4) Takada, K.; Uehara, T.; Nakao, Y.; Matsunaga, S.; van Soest, R. W.
M.; Fusetani, N. J. Am. Chem. Soc. 2004, 126, 187.
(5) Awad, E. M.; Elwan, N. M.; Hassaneen, H. M.; Linden, A.;
Heimgartner, H. HelV. Chim. Acta 2002, 85, 320.
Azlactones 4 were prepared directly from the reaction of
benzaldehydes and N-acetylglycine or hippuric acid in the
presence of sodium acetate and acetic anhydride.1a They were
obtained in moderate yields after recrystallization from
ethanol. The required 3,4-dihydroisoquinolines 5 and 6 were
synthesized by the well-established Bischler-Napieralski
reaction starting from the arylethylamine derivatives which
were converted to the corresponding amide derivatives and
then cyclized to imines 5 and 6 using POCl3.16
(6) (a) Jeffs, P. W. In The Alkaloids; Manske, R. H. F., Ed.; Academic
Press: New York, London, 1967; p 41. (b) Singh, K. N. Tetrahedron Lett.
1998, 39, 4391. (c) Memetzidis, G.; Stambach, J. F.; Jung, L.; Schott, C.;
Heitz, C.; Stocklet, J. C. Eur. J. Med. Chem. 1991, 26, 605. (d) Suan, R.;
Lo´pez-Romero, J. M.; Ruiz, A.; Rico, R. Tetrahedron 2000, 56, 993.
(7) (a) Sza´ntay, C.; To¨ke, L.; Kolonits, P. J. Org. Chem. 1966, 31, 1447.
(b) Buzas, A.; Cavier, R.; Cossais, F.; Finet, J.-P.; Jacquet, J.-P.; Lavielle,
G.; Platzer, N. HelV. Chim. Acta 1977, 60, 2122.
With both key starting materials in hand, the reaction of
the simple dihydroisoquinolines with azlactones in acetoni-
trile was investigated. When 3,4-dihydroisoquinoline 5a was
treated with azlactone 4a (entry 1, Table 1) in acetonitrile
under reflux for 12 h, a single product was obtained in good
yield (88%). The product was characterized as imidazolo-
isoquinolin-3-one 1a on the basis of spectroscopic and
(8) Reviews: (a) Saraf, S. D. Heterocycles 1981, 16, 803. (b) Popp, F.
D.; Watts, R. F. Heterocycles 1977, 6, 1189.
(9) (a) Kirschbaum, S.; Waldmann, H. Tetrahedron Lett. 1997, 38, 2829.
(b) Kirschbaum, S.; Waldmann, H. J. Org. Chem. 1998, 63, 4936. (c) Van
der Eycken, E.; Deroover, G.; Toppet, S. M.; Hoornaert, G. J. Tetrahedron
Lett. 1999, 40, 9147. (d) Yamaguchi, R.; Otsuji, A.; Utimoto, K. J. Am.
Chem. Soc. 1988, 110, 2186. (e) Itoh, N.; Sugasawa, S. J. Org. Chem. 1959,
24, 2042. (f) Osbond, J. M. J. Chem. Soc. 1961, 4711. (g) Bosch, J.;
Domingo, A.; Linares, A. J. Org. Chem. 1983, 48, 1075. (h) Rubiralta, M.;
Diez, A.; Balet, A.; Bosch, J. Tetrahedron 1987, 43, 3021. (i) Rubiralta,
M.; Diez, A.; Bosch, J. Heterocycles 1988, 27, 1653.
(10) For a review of these compounds, see: Scott, J. D.; Williams, R.
M. Chem. ReV. 2002, 102, 1669. (a) Chan, C.; Heid, R.; Zheng, S.; Guo,
J.; Zhou, B.; Furuuchi, T.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127,
4596. (b) Pettit, G. R.; Knight, J. C.; Collins, J. C.; Herald, D. L.; Pettit, R.
K.; Boyd, M. R.; Young, V. G. J. Nat. Prod. 2000, 63, 793.
(11) (a) Bergemann, S.; Brecht, R.; Bu¨ttner, F.; Gue´nard, D.; Gust, R.;
Seitz, G.; Stubbs, M. T.; Thoret, S. Bioorg. Med. Chem. 2003, 11, 1269.
(b) Brecht, R.; Gunther, S.; Gue´nard, D.; Thoret, S. Bioorg. Med. Chem.
2000, 8, 557. (c) Berg, U.; Bladh, H.; Svensson, C.; Wallin, M. Bioorg.
Med. Chem. Lett. 1997, 7, 2771.
1
analytical data with a singlet at δ 6.56 (C-10b) in the H
NMR spectrum and the amide groups at 1713 and 1668 cm-1
in the IR spectrum. To further demonstrate the scope of this
cyclocondensation reaction, the reaction of various azlactones
4a-d and dihydroisoquinolines 5a-c was investigated and
the corresponding imidazoloisoquinolin-3-ones 1b-h were
obtained in yields ranging from 4 to 94% as shown in Table
1.
The mechanism for the formation of 1 is proposed to
involve the acyl iminium salt 7 formed by the reaction of
the imine group of the dihydroisoquinoline with the carbonyl
group of azlactone followed by subsequent C-N bond
formation to provide the imidazoloisoquinolin-3-ones 1
(Scheme 1).
(12) Lal, B.; Bhedi, D. N.; Gidwani, R. M.; Sankar, C. Tetrahedron 1994,
50, 9167.
(13) (a) Abdallah, T. A.; Abdelhadi, H. A.; Ibrahim, A. A.; Hassaneen,
H. M. Synth. Commun. 2002, 32, 581. (b) Roy, A.; Nandi, S.; Ila, H.;
Junjappa, H. Org. Lett. 2001, 3, 229. (c) Nemes, P.; Bala´zs, B.; To´th, G.;
Scheiber, P. Synlett 2000, 1327. (d) Nemes, P.; Bala´zs, B.; To´th, G.;
Scheiber, P. Synlett 1999, 222. (e) Mikhal’chuk, A. L.; Gulyakevich, O.
V.; Akhrem, A. A. Russ. J. Org. Chem. 1997, 33, 582. (f) Mikhal’chuk, A.
L.; Gulyakevich, O. V. Zh. Obshch. Khim. 1996, 66, 163. (g) Mikhal’chuk,
A. L.; Gulyakevich, O. V.; Akhrem, A. A. Khim. Geterotsikl. Soedin. 1996,
235. (h) Naito, T.; Katsumi, K.; Tada, Y.; Ninomiya, I. Heterocycles 1983,
20, 775. (i) Shono, T.; Hamaguchi, H.; Sasaki, M.; Fujita, S.; Nagami, K.
J. Org. Chem. 1983, 48, 1621. (j) Lenz, G. R. J. Heterocycl. Chem. 1979,
16, 433. (k) Ninomiya, I.; Kiguchi, T.; Tada, Y. Heterocycles 1977, 6, 1799.
(l) Kametani, T.; Suzuki, Y.; Terasawa, H.; Ihara, M. J. Chem. Soc., Perkin
Trans. I 1979, 1211.
(14) Rozwadowska, M. D.; Sulima, A. Tetrahedron 2001, 57, 3499.
(15) (a) Ruchirawat, S.; Mutatapat, T. Tetrahedron Lett. 2001, 42, 1205.
(b) Namsaaid, A.; Ruchirawat, S. Org. Lett. 2002, 4, 2633. (c) Ploypradith,
P.; Jinaglueng, W.; Pavaro, C.; Ruchirawat, S. Tetrahedron Lett. 2003, 44,
1363. (d) Ploypradith, P.; Mahidol, C.; Sahakitpichan, P.; Wongbundit, S.;
Ruchirawat, S. Angew. Chem., Int. Ed. 2004, 43, 866. (e) Ploypradith, P.;
Kagan, R. K.; Ruchirawat, S. J. Org. Chem. 2005, 70, 5119.
(16) (a) Pabuccuoglu, V.; Hesse, M. Heterocycles 1997, 45, 1751. (b)
Barbier, D.; Marazano, C.; Das, B. C.; Potier, P. J. Org. Chem. 1996, 61,
9596. (c) Marsden, R.; MacLean, D. B. Can. J. Chem. 1984, 62, 1392.
5846
Org. Lett., Vol. 8, No. 25, 2006