C O M M U N I C A T I O N S
Table 2. Iridium-Catalyzed Asymmetric Hydrogenation of 1a
through our synthesis (for the detailed procedure, see Supporting
Information). 2j is the key intermediate in the synthesis of anti-
bacterial agent of flumequine,16 which was obtained through the
resolution method.
In conclusion, we developed the first example of highly enan-
tioselectiVe hydrogenation of quinoline deriVatiVes using an Ir/
phosphine/I system and applied it to the asymmetric synthesis of
2
three naturally occurring alkaloids angustureine, galipinine, and
cuspareine. This method provides an efficient access to a variety
of optically active tetrahydroquinolines with up to 96% ee. Since
tetrahydroquinoline derivatives are important synthetic intermediates
and biologically active compounds, the current method has a high
potential for practical use in organic synthesis. Further work will
be directed toward detailed study of the reaction mechanism and
the development of the hydrogenation of a broader range of
substrates and other heteroaromatic systems.
Acknowledgment. We are grateful for the financial support
from Talent Scientist Program, the Chinese Academy of Sciences.
Supporting Information Available: Characterization data for all
compounds and experimental procedures (PDF). This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
1) For reviews, see: (a) Ojima, I., Ed. Catalytic Asymmetric Synthesis; VCH
Publishers: New York, 1999. (b) Noyori, R. Ed. Asymmetric Catalysis
in Organic Synthesis; Wiley: New York, 1994. (c) Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds. ComprehensiVe Asymmetric Catalysis;
Springer: Berlin, 1999; Vol. 1.
(
2) Bird, C. W. Tetrahedron Lett. 1992, 48, 335-340.
(
3) Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem.
Soc. 2000, 122, 7614-7615.
a
(4) (a) Bianchini, C.; Barbaro, P.; Scapacci, G.; Farnetti, E.; Graziani, M.
Organometallics 1998, 17, 3308-3310. (b) Bianchini, C.; Barbaro, P.;
Scapacci, G. J. Organomet. Chem. 2001, 621, 26-33.
Reaction conditions: 1 mmol quinoline, [Ir(COD)Cl]2 (0.5%), (R)-MeO-
b
Biphep (1.1%), I2 (10%), 5 mL toluene, 600-700 psi H2. Isolated yields
based on quinolines. c Determined by HPLC analysis. Determined by
d
(
5) (a) Studer, M.; Wedemeyer-Exl, C.; Spindler, F.; Blaser, H. U. Monatsh.
Chem. 2002, 131, 1335. (b) Murata, S.; Sugimoto, T.; Matsuura, S.
Heterocycles 1987, 26, 763-766.
6) Keay, J. D. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 8, pp 579-601.
e
comparison of rotation sign with the literature data or by analogue. The
product is 2d. i-PrOH was used as solvent.
f
(
Scheme 2
(
7) (a) Barton, D. H. R.; Nakanishi, K.; Meth-Cohn, O., Eds. ComprehensiVe
Natural Products Chemistry; Elsevier: Oxford, 1999; Vol. 1-9. (b)
Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fouraste, I.; Moulis,
C. Phytochemistry 1999, 51, 1167-1169. (c) Rokotoson, J. H.; Fabre,
N.; Jacquemond-Collet, I.; Hannedouche, S.; Fabre, N.; Fouraste, I.;
Moulis, C. Planta Med. 1998, 64, 762-763. (d) Houghton, P. J.;
Woldemariam, T. Z.; Watanabe, Y.; Yates, M. Planta Med. 1999, 65,
2
50-254. (e) Jacquemond-Collet, I.; Bessiere, J. M.; Hannedouche, S.;
Bertrand, C.; Fouraste, I.; Moulis, C. Phytochem. Anal. 2001, 12, 312-
19.
3
(
8) (a) Kuwano, R.; Sato, K.; Ito, Y. Chem. Lett. 2000, 428-430. (b) Baralt,
E.; Smith, S. J.; Hurwitz, J.; Horvath, I. T.; Fish, R. H. J. Am. Chem.
Soc. 1992, 114, 5187-5196. (c) Fish, R. H.; Baralt, E.; Smith, S. J.
Organometallics 1991, 10, 54-56. (d) Fish, R. H.; Tan, J. L.; Thormodsen,
A. D. J. Org. Chem. 1984, 49, 4500-4505. (e) Murahashi, I.; Imada, Y.;
Hirai, Y. Tetrahedron Lett. 1987, 28, 77-80. (f) Bianchini, C.; Barbaro,
P.; Macchi, M.; Meli, A.; Vizza, F. HelV. Chim. Acta 2001, 84, 2895-
substrates with free hydroxyl, 1n, 1p, 1r, and 1s, can be hydroge-
nated smoothly with high enantioselectivities. The CdC double
bond in the side chain of substrate 1e (entry 5) can be hydrogenated
under standard conditions. It is noted that very low enantioselec-
tivities were obtained for 3- or 4-substituted quinoline derivatives
2923.
(9) (a) Bianchini, C.; Meli, A.; Moneti, S.; Oberhauser, W.; Vizza, F.; Herrera,
V.; Fuentes, A.; Sauchez-Delgado, R. J. Am. Chem. Soc. 1999, 121, 7071-
7
080. (b) Fish, R. H.; Tan, J. L.; Thormodsen, A. D. Organometallics
1
985, 4, 1743-1747 (c) Watanable, Y.; Ohta, T.; Tsuji, Y.; Hiyoshi, T.;
(0% and 1% ee for 3- and 4-methylquinoline, respectively), and
Tsuji, Y. Bull. Chem. Soc. Jpn. 1984, 57, 2440-2449.
(
10) Vogl, E. M.; Groger, H.; Shibasaki, M. Angew. Chem., Int. Ed. 1999, 38,
the reason is not clear.
1570-1577.
Iridium-catalyzed asymmetric hydrogenation of quinolines pro-
vides a convenient route to synthesize optically active tetrahydro-
quinoline derivatives since quinolines are very cheap starting
materials. This methodology can be successfully applied to asym-
metric synthesis of tetrahedroquinoline alkaloids (Scheme 2). For
example, 2f, 2h, and 2i are naturally occurring tetrahydroquinoline
(11) (a) Togni, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 1475-1477. (b)
Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425-3428.
12) Morimoto, T.; Nakajima, N.; Achiwa, K. Chem. Pharm. Bull. 1994, 42,
(
1951-1953.
(
(
13) Morimoto, T.; Nakajima, N.; Achiwa, K. Synlett 1995, 748-750.
14) (a) Zhu, G.; Zhang, X. Tetrahedron: Asymmetry 1998, 9, 2415-2418.
(b) Morimoto, T.; Suzuki, N.; Achiwa, K. Heterocycles 1996, 43, 2557-
2560.
(15) Tani, K.; Onouchi, J.; Yamagata, T.; Kataoka, Y. Chem. Lett. 1995, 955-
7e
alkaloids, N-methylation of 2f, 2h, and 2i gives naturally occurring
956.
7
b
7c,7d
tetrahydroquinoline alkaloids angustureine, galipinine,
and
(16) Balint, J.; Egri, G.; Fogassy, E., Bocskei, Z.; Simon, K.; Gajary, A.; Friesz,
cuspareine,7d respectively in high total yields, and absolute con-
A. Tetrahedron: Asymmetry 1999, 10, 1079.
figurations of (+)-angustureine and (-)-galipinine can be assigned
JA0353762
J. AM. CHEM. SOC.
9
VOL. 125, NO. 35, 2003 10537