3
6. (a) Soai K, Ookawa A, Hayashi H. J Chem Soc, Chem
Commun. 1983:668-669;
On the basis of control experiments, a plausible mechanism for
this transformation is depicted in Scheme 3. Initially, styrene (1a)
in the presence of NBS forms cyclic bromonium ion A which
undergoes a ring opening through nucleophilic attack of H2O to
give bromohydrin B as an intermediate. Bromohydrin B in the
presence of NBS undergoes oxidation to form α-
D on subsequent
iodination with iodine forms bromodiiodoketone E which on
haloform reaction with aq. ammonia offers benzamide (2a).
(b) Prasad ASB, Kanth JVB, Periasamy M. Tetrahedron. 1992;
48:4623-4628;
(c) Yang C, Pittman CU. Synth Commun. 1998;28:2027-2041;
(d) Bose DS, Jayalakshmi B. J Org Chem. 1999;64:1713-1714;
(e) Manjula K, Afzal Pasha M. Synth Commun. 2007;37:1545-
1550;
(f) Kuo C-W, Zhu J-L, Wu J-D, Chu C-M, Yao C-F, Shia K-
S. Chem Commun. 2007:301-303;
(g) Chaudhari K, Mahajan U, Bhalerao D, Akamanchi
K. Synlett. 2007:2815-2818;
bromoacetophenone (D).24 Intermediate
(h) Kumar MP, Liu R-S.
J Org Chem. 2006;71:4951-4955;
(i) Gayon E, Szymczyk M, Gérard H, Vrancken E, Campagne J-
M. J Org Chem. 2012;77:9205-9220;
(j) Zheng M, Huang L, Huang H, Li X, Wu W, Jiang H. Org
Lett. 2014, 16, 5906-5909;
(k) Altenhoff G, Glorius F. Adv Synth Catal. 2004;346:1661-1664;
(l) Ibrahim N, Legraverend M. J Org Chem. 2009;74:463-465;
(m) Pan Y, Zheng F, Lin H, Zhan Z. J Org Chem. 2009;74:3148-
3151.
7. (a) Khalafi-Nezhad A, Mokhtari B, Rad MNS. Tetrahedron
Lett. 2003;44:7325-7328;
(b) Khalafi-Nezhad A, Parhami A, Rad MNS, Zarea,
A. Tetrahedron Lett. 2005;46:6879-6882;
(c) Zhang L, Wang S, Zhou S, Yang G, Sheng E. J Org
Chem. 2006;71:3149-3153;
(d) Shie J-J, Fang J-M.
J Org Chem. 2003;68:1158-1160;
(e) Tamaru Y, Yamada Y, Yoshida Z. Synthesis. 1983:474-476;
(f) Tillack A, Rudloff I, Beller M. Eur J Org Chem. 2001:523-
528;
(g) Veitch GE, Bridgwood KL, Ley SV. Org Lett. 2008;10:3623-
3625;
(h) Rodrigues RdaC, Barros IMA, Lima ELS. Tetrahedron
Lett. 2005;46:5945-5947.
8. (a) Ranu BC, Sarkar A, Chakraborty R.
J
Org
Scheme 3. Proposed reaction mechanism.
Chem. 1994;59:4114-4116;
(b) Mentel M, Beier M, Breinbauer R. Synthesis. 2009:1463-1468.
9. (a) Yamaguchi K, Matsushita M, Mizuno N. Angew Chem. 2004;
116:1602-1606;
In conclusion, we have developed an efficient and practical
one-pot synthesis of substituted benzamides from easily available
styrenes in the presence of N-bromosuccinimide and iodine by
using aq. ammonia in water. Use of inexpensive reagents, water
as an oxygen source as well as a solvent, metal-free conditions,
broad substrate scope, good yields of benzamides are notable
features of this protocol. We strongly believe that this protocol
will be widely used for the synthesis of benzamides.
(b) Yamaguchi K, Matsushita M, Mizuno N. Angew Chem Int
Ed. 2004;43:1576-1580;
(c) Crestani MG, Arévalo A, García JJ. Adv Synth
Catal. 2006;348:732-742;
(d) Moorthy JN, Singhal N. J Org Chem. 2005;70:1926-1929;
(e) Jiang X, Minnaard AJ, Feringa BL, de Vries JG. J Org
Chem. 2004;69:2327-2331;
(f) Goto A, Endo K, Saito S. Angew Chem. 2008;120:3663-3665;
(g) Goto A, Endo K, Saito S. Angew Chem Int Ed. 2008;47:3607-
3609.
Acknowledgment
P.A.S. thanks University Grants Commission, New Delhi, for
providing fellowship. A.S.K., B.S.P. and A.A.P. thank Defence
10. (a) Field L, Hughmark PB, Shumaker SH, Marshall WS. J Am
Chem Soc. 1961;83:1983-1987;
Research
and
Development
Organisation
(b) Leusink AJ, Meerbeek TG, Noltes JG. Recl Trav Chim Pays-
Bas. 2010;95:123-125;
(c) Park S, Choi Y, Han H, Ha Yang S, Chang S. Chem
Commun. 2003:1936-1937;
(d) Owston NA, Parker AJ, Williams JMJ. Org Lett. 2007;9:3599-
3601;
(e) Fujiwara H, Ogasawara Y, Yamaguchi K, Mizuno N. Angew
Chem. 2007;119:5294-5297;
(ERIP/ER/1503212/M/01/1666), New Delhi, India for funding
support. K.S.V. and A.C.C. thank DST-SERB, India (sanction
no. SB/FT/CS-147/2013) for financial support.
Supporting Information
(f) Fujiwara H, Ogasawara Y, Yamaguchi K, Mizuno N. Angew
Chem Int Ed. 2007;46:5202-5205;
(g) Owston NA, Parker AJ, Williams JMJ. Org Lett. 2007;9:73-
75.
Supporting information for this article is available online at
References and notes
11. Chan W-K, Ho C-M, Wong M-K, Che C-M. J Am Chem
Soc. 2006;128:14796-14797.
12. (a) Gunanathan
C,
Ben-David
Y,
Milstein
1. Arthur G. The Amide Linkage: Selected Structural Aspects in
Chemistry, Biochemistry, and Materials Science; Wiley-
Interscience: New York, 2000.
2. Budavari S. The Merck Index; Merck: Rahway, NJ, 1989, 11th ed.
3. Pattabiraman VR, Bode JW. Nature. 2011;480:471-479.
4. Roy S, Roy S, Gribble GW. Tetrahedron. 2012;68:9867-9923.
5. (a) Matsuda F. Chemtech. 1977;7:306-308;
D. Science. 2007;317:790-792;
(b) Zweifel T, Naubron J-V, Grützmacher H. Angew Chem Int
Ed. 2009;48:559-563.
13. (a) Kim JW, Yamaguchi K, Mizuno N. Angew Chem Int
Ed. 2008;47:9249-9251;
(b) Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda
K. Chem Commun. 2001:461-462.
14. (a) Yamaguchi K, Kobayashi H, Oishi T, Mizuno N. Angew Chem
Int Ed. 2012;51:544-547;
(b) Mabermann CE. In Encyclopedia of Chemical Technology;
Vol. 1; Kroschwitz JI, eds. Wiley: New York, 1991:251-266;
(c) Lipp D. In Encyclopedia of Chemical Technology; Vol. 1;
Kroschwitz JI, eds. Wiley: New York, 1991:266-287;
(d) Opsahl R. In Encyclopedia of Chemical Technology; Vol. 2;
Kroschwitz JI, eds. Wiley: New York, 1991:346-356.
(b) Nie R, Shi J, Xia S, Shen L, Chen P, Hou Z, Xiao F-S. J Mater
Chem. 2012;22:18115-18118.