10.1002/anie.201807419
Angewandte Chemie International Edition
COMMUNICATION
[12] I. Castilla-Cortázar, J. Más-Estellés, J. Meseguer-Dueñas, J. E. Ivirico, B.
Marí, A. Vidaurre, Polym. Degrad. Stab. 2012, 97, 1241-1248.
[13] E. S. Place, J. H. George, C. K. Williams, M. M. Stevens, Chem. Soc.
Rev. 2009, 38, 1139-1151.
functional groups throughout the degradable polymer chain by
post-polymerization and post-printing is a significant advantage
over previous non-functional PPF. Functional epoxides with
chlorine (EC), alkyne (GPE) and o-nitrophenyl (NMMO) moieties
were copolymerized with MA, which resulted in three functional
PPF analogues, PEF, PGPEF and PNMMOF. 1H NMR spectra
and MALDI-ToF MS indicated that no non-degradable ether
linkages appeared in the polymer backbone. A series of functional
analogues at printable molecular masses were synthesized and it
was shown that the pendent functionality could be used to modify
the Tg of the polymer. This offers the potential to reduce the
amount of solvent necessary in PPF resins for stereolithographic
printing. Moreover, functional PPF analogues with alkyne and o-
nitrophenyl moieties were shown to readily undergo post-
polymerization modification without unwanted side reactions.
Thus, these analogues can be used to attach bioactive species to
printed scaffold constructs post-polymerization to enhance
bioactivity, overcoming several of the limitations currently
associated with PPF.
[14] J. M. Walker, E. Bodamer, O. Krebs, Y. Luo, A. Kleinfehn, M. L. Becker,
D. Dean, Biomacromolecules 2017, 18, 1419-1425.
[15] J. P. Fisher, D. Dean, A. G. Mikos, Biomaterials 2002, 23, 4333-4343.
[16] D. H. Kempen, L. Lu, C. Kim, X. Zhu, W. J. Dhert, B. L. Currier, M. J.
Yaszemski, J. Biomed. Mater. Res. A 2006, 77, 103-111.
[17] J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J.
W. Bulte, J. P. Fisher, A. A. Gilad, J. Control. Release 2011, 156, 239-
245.
[18] Y. Xu, D. Luong, J. M. Walker, D. Dean, M. L. Becker,
Biomacromolecules 2017, 18, 3168-3177.
[19] H. C. Kolb, M. Finn, K. B. Sharpless, Angew. Chem., Int. Ed. 2001, 40,
2004-2021.
[20] W. Tang, M. L. Becker, Chem. Soc. Rev. 2014, 43, 7013-7039.
[21] V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen,
Chem. Rev. 2016, 116, 3086-3240.
[22] G. M. Policastro, F. Lin, L. A. Smith Callahan, A. Esterle, M. Graham, K.
Sloan Stakleff, M. L. Becker, Biomacromolecules 2015, 16, 1358-1371.
[23] N. D. Gallant, K. A. Lavery, E. J. Amis, M. L. Becker, Adv. Mater. 2007,
19, 965-969.
Acknowledgements
The Ohio Department of Development’s Open Innovation
Platform “Akron Functional Materials Center” and 21st Century
Medical Technologies are acknowledged for financial support.
M.L.B is grateful for support from the W. Gerald Austen Endowed
Chair in Polymer Science and Polymer Engineering from the John
S. and James L. Knight Foundation. C.W. acknowledges support
from NSF (CHE-1308307). The authors acknowledge useful
suggestions from Yen-Hao Hsu, Shan Li, Jiayi Yu and Peiru Chen
during the post-polymerization modification steps.
[24] R. Wang, W. Chen, F. Meng, R. Cheng, C. Deng, J. Feijen, Z. Zhong,
Macromolecules 2011, 44, 6009-6016.
[25] J. A. Wilson, D. Luong, A. P. Kleinfehn, S. Sallam, C. Wesdemiotis, M. L.
Becker, J. Am. Chem. Soc. 2018, 140, 277-284.
[26] M. J. Yaszemski, R. G. Payne, A. G. Mikos, USA Patent US5733951A,
Mar 31, 1998.
[27] K. Bester, A. Bukowska, B. Myśliwiec, K. Hus, D. Tomczyk, P. Urbaniak,
W. Bukowski, Polym. Chem. 2018, 9, 2147-2156.
Keywords: degradable • ring-opening copolymerization • post-
polymerization modification • additive manufacturing
[28] A. Kummari, S. Pappuru, D. Chakraborty, Polym. Chem. 2018, 9, 4052-
4062.
[29] M. J. Sanford, N. J. Van Zee, Geoffrey W. Coates, Chem. Sci. 2018, 9,
134-142.
[1] D. Grafahrend, G. Boehm, J. Groll, K.-H. Heffels, M. Möller, M. V. Beer, P.
D. Dalton, P. Gasteier, Nat. Mater. 2011, 10, 67-73.
[2] D. Putnam, Nat. Mater. 2006, 5, 439-451.
[30] H. Ji, X. Chen, B. Wang, L. Pan, Y. Li, Green Chem. 2018.
[31] A. M. DiCiccio, G. W. Coates, J. Am. Chem. Soc. 2011, 133, 10724-
10727.
[3] V. Delplace, J. Nicolas, Nat. Chem. 2015, 7, 771-784.
[4] A. N. Zelikin, C. Ehrhardt, A. M. Healy, Nat. Chem. 2016, 8, 997-1007.
[5] H. Sai, K. W. Tan, K. Hur, E. Asenath-Smith, R. Hovden, Y. Jiang, M.
Riccio, D. A. Muller, V. Elser, L. A. Estroff, Science 2013, 341, 530-534.
[6] M. Xiong, D. K. Schneiderman, F. S. Bates, M. A. Hillmyer, K. Zhang,
Proc. Natl. Acad. Sci. 2014, 111, 8357-8362.
[32] A. M. DiCiccio, J. M. Longo, G. G. Rodríguez-Calero, G. W. Coates, J.
Am. Chem. Soc. 2016, 138, 7107-7113.
[33] J. M. Longo, M. J. Sanford, G. W. Coates, Chem. Rev. 2016, 116, 15167-
15197.
[34] R. C. Jeske, A. M. DiCiccio, G. W. Coates, J. Am. Chem. Soc. 2007, 129,
11330-11331.
[7] M. A. Hillmyer, W. B. Tolman, Acc. Chem. Res. 2014, 47, 2390-2396.
[8] G. Pitt, M. Gratzl, G. Kimmel, J. Surles, A. Sohindler, Biomaterials 1981,
2, 215-220.
[35] H. Li, H. Luo, J. Zhao, G. Zhang, Macromolecules 2018, 51, 2247-2257.
[36] T. T. D. Chen, Y. Zhu, C. K. Williams, Macromolecules 2018, 51, 5346-
5351.
[9] T. M. Seck, F. P. Melchels, J. Feijen, D. W. Grijpma, J. Control. Release
2010, 148, 34-41.
[37] S. Tim, W. C. K., Angew. Chem., Int. Ed. 2018, 57, 6337-6341.
[38] S. Paul, Y. Zhu, C. Romain, R. Brooks, P. K. Saini, C. K. Williams, Chem.
Commun. 2015, 51, 6459-6479.
[10] F. P. Melchels, J. Feijen, D. W. Grijpma, Biomaterials 2009, 30, 3801-
3809.
[11] J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H.
Krebsbach, S. E. Feinberg, S. J. Hollister, S. Das, Biomaterials 2005, 26,
4817-4827.
[39] J. Herzberger, H. Frey, Macromolecules 2015, 48, 8144-8153.
[40] C. G. Rodriguez, R. C. Ferrier, A. Helenic, N. A. Lynd, Macromolecules
2017, 50, 3121-3130.
This article is protected by copyright. All rights reserved.