ORGANIC
LETTERS
2
002
Vol. 4, No. 10
813-1815
Synthesis of Cryptophycin 52 Using the
Shi Epoxidation
1
†
,†
†
‡
David W. Hoard, Eric D. Moher,* Michael J. Martinelli, and Bryan H. Norman
Chemical Process Research and DeVelopment and DiscoVery Chemistry Research
DiVisions, Lilly Research Laboratories, Eli Lilly and Company,
Indianapolis, Indiana 46285
Received March 26, 2002
ABSTRACT
A synthesis of cryptophycin 52 is reported using a Shi epoxidation strategy to install the epoxide moiety in a diastereoselective fashion.
Several epoxidation results for cryptophycin substrates are disclosed followed by a discussion of the details relating to the preparation of
cryptophycin 52 in two synthetic steps from one of the intermediate epoxides.
1
The cryptophycins, exemplified by cryptophycin 1 (1), are
aimed at discovering and developing cryptophycin analogues
possessing refined biological properties. From this effort has
emerged cryptophycin 52 (2), which has undergone ad-
cytotoxic macrocyclic depsipeptides isolated from blue-green
algae (Nostoc sp. strains ATCC 537189 and GSV 224 ).
Cryptophycin 1 (1) has been shown by Moore and coworkers
to be a potent tumor selective cytotoxin in vivo. Note-
worthy is the broad spectrum of antitumor activity exhibited
by 1 across a variety of tumors implanted in mice. Particu-
larly compelling is the observation that 1 significantly
reduced the mean tumor burden from a Taxol-resistant
2
3
5
vanced clinical evaluation for the treatment of solid tumors.
Several research groups have adopted programs aimed at
addressing the synthetic challenges associated with this
structurally intriguing class of molecules. The first reports
on the total synthesis of cryptophycins appeared in 1994 from
3
,4
6
7
7
the research groups of Kitigawa, Moore, and Tius. These
were soon followed by numerous approaches comprised of
3
mammary adenocarcinoma tumor implanted in mice.
8
both formal and total syntheses. A strategical theme common
to the majority of syntheses of epoxide-containing crypto-
(2) Schwartz, R. E.; Hirsch, C. F.; Sesin, D. F.; Flor, J. E.; Chartrain,
M.; Fromtling, R. E.; Harris, G. H.; Salvatore, M. J.; Liesch, J. M.; Yudin,
K. J. Ind. Microbiol. 1990, 5, 113.
(
3) Trimurtulu, G.; Ohtani, I.; Patterson, G. M. L.; Moore, R. E.; Corbett,
T. H.; Valeriote, F. A.; Demchik, L. J. Am. Chem. Soc. 1994, 116, 4729.
4) Golakoti, T.; Ogino, J.; Heltzel, C. E.; Husebo, T. L.; Jensen, C. M.;
(
Larsen, L. K.; Patterson, G. M. L.; Moore, R. E.; Mooberry, S. L.; Corbett,
As a result of these findings, we engaged in a collaboration
with the University of Hawaii and Wayne State University
T. H.; Valeriote, F. A. J. Am. Chem. Soc. 1995, 117, 12030.
(
5) (a) Moore, R. E.; Tius, M. A.; Barrow, R. A.; Liang, J.; Corbett, T.
H.; Valeriote, F. A.; Hemscheidt, T. K. PCT Int. Appl. WO 9640184 A1
9961219, 1996. (b) Wagner, M. M.; Paul, D. C.; Shih, C.; Jordan, M. A.;
1
†
Chemical Process Research and Development.
Wilson, L.; Williams, D. C. Cancer Chemother. Pharmacol. 1999, 43, 115
and references therein.
‡
Discovery Chemistry Research.
(
1) For recent reviews, see: (a) Shih, C.; Al-Awar, R. S.; Fray, A. H.;
(6) Kobayashi, M.; Kurosu, M.; Wang, W.; Kitigawa, I. Chem. Pharm.
Bull. (Japan) 1994, 42, 2394.
(7) Barrow, R. A.; Hemscheidt, T.; Liang, J.; Paik, S.; Moore, R. E.;
Tius, M. A. J. Am. Chem. Soc. 1995, 117, 2479.
(8) For example, see: Eggen, M.; Nair, S. K.; Georg, G. I. Org. Lett.
2001, 3, 1813 and references therein.
Martinelli, M. J.; Moher, E. D.; Norman, B. H.; Patel, V. F.; Shultz, R. M.;
Toth, J. E.; Varie, D. L.; Corbett, T. H.; Moore, R. E. In Anticancer
Agents: Frontiers in Cancer Chemotherapy; Ojima, I., Vite, G. D., Altman,
K., Eds.; Washington, DC, 2001; Vol. 796, pp 171-189. (b) Eggen, M.-J.;
Georg, G. I. Med. Res. ReV. 2002, 22, 85.
1
0.1021/ol025933+ CCC: $22.00 © 2002 American Chemical Society
Published on Web 04/25/2002