C O M M U N I C A T I O N S
Scheme 2. Generalized Mechanism for [4 + 2] Cycloadditions
Table 3. Diels-Alder Reactions of 5 and Dienes
2
cyclization to produce ketyl intermediate 43. Loss of ZnI from 43
and subsequent single electron transfer to another complex 40 may
afford cycloadduct 16 and radical anion 41, thereby restarting the
catalytic cycle.
a
In summary, we have developed [4 + 2] cycloadditions of highly
Condition A: 10/10/60/10 mol% CoI2/8/ZnI2/Bu4NBH4, 40 °C; condition
b
B: 60/10 mol% ZnI2/Bu4NBH4, 40 °C, see Supporting Information. Isolated
yields. Single regioisomer. Single endo isomer. 1.5:1 exo/endo ratio.
electron-rich 2′-hydroxychalcones and dienes using catalyst systems
c
d
e
-
composed of electron donor (Co(I) or BH
4
) and a Lewis acid (ZnI
2
).
Mechanistic studies and further applications toward the syntheses of
other natural product targets are currently in progress and will be
reported in due course.
Table 4. Diels-Alder Reactions of Electron-Rich 2′-Hydroxychalcones
Acknowledgment. Financial support from the NIH (Grant GM-
073855), Merck, and Wyeth is gratefully acknowledged. We thank
Dr. Aaron Beeler and Ms. Susan Cunningham (CMLD-BU) for HPLC
assistance, and Dr. Branko Mitasev (Boston University) and Dr. Bruce
Branchaud (Invitrogen) for helpful discussions.
a
b
entry
2′-hydroxychalcone
product
condition
yield (%)
1
2
3
4
Supporting Information Available: Experimental procedures and
characterization data for all new compounds. This material is available
free of charge via the Internet at http://pubs.acs.org.
1
27: R )OMe, R ,R ,R )H
28
A
B
A
B
A
A
A
A
68
36
84
55
33
72
18
61
1
2
3
4
2
29: R )OAc, R ,R ,R )H
30
References
1
2
3
4
3
4
5
6
31: R ,R )OMe, R ,R )H
32
34
36
38
1
2
3
4
(1) Nomura, T. Pure Appl. Chem. 1999, 71, 1115.
(2) Nomura, T.; Fukai, T. Chem. Pharm. Bull. 1980, 28, 2548.
33: R ,R )OAc, R ,R )H
1
3
4
2
35: R ,R ,R )OMe, R )H
(
3) Ferrari, F.; Delle Monache, F.; Suarez, A. I.; Compagnone, R. S. Fitoterapia
1
3
4
2
37: R ,R ,R )OAc, R )H
2
000, 71, 213.
(
4) Stocking, E. M.; Williams, R. M. Angew. Chem., Int. Ed. 2003, 42, 3078.
a
Condition A: 20/40/120/20 mol % CoI2/8/ZnI2/Bu4NBH4; condition B:
20/20 mol % ZnI2/Bu4NBH4, see Supporting Information. Isolated yields.
(5) Tuntiwachwuttikul, P.; Pancharoen, O.; Reutrakul, V.; Byrne, L. T. Aust.
J. Chem. 1984, 37, 449.
b
1
(
6) Gu, J-Q; Park, E. J.; Vigo, J. S.; Graham, J. G.; Fong, H. H. S.; Pezzuto,
J. M.; Kinghorn, A. D. J. Nat. Prod. 2002, 65, 1616.
7) For Diels-Alder cycloaddition of 2′-hydroxychalcone, see: Brito, C. M.;
Pinto, D. C. G. A.; Silva, A. M. S.; Silva, A. M. G.; Tome, A. C.; Cavaleiro,
J. A. S. Eur. J. Org. Chem. 2006, 2558.
8) Radical cation cycloadditions: Bauld, N. L. Tetrahedron 1989, 45, 5307.
9) (a) Otto, S.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1999, 121, 6798. (b)
Barroso, S.; Blay, G.; Pedro, J. R. Org. Lett. 2007, 9, 1983.
Scheme 1. Synthesis of Nicolaioidesin C
(
(
(
(
10) Wei, K.; Li, W.; Koike, K.; Nikaido, T. Org. Lett. 2005, 7, 2833.
11) Select examples of Co(I)-catalyzed cycloadditions: (a) Baik, T.-G.; Wang,
L.-C.; Luiz, A.-L.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 9448. (b)
Chang, H.-T.; Jayanth, T. T.; Cheng, C.-H. J. Am. Chem. Soc. 2007, 129,
2
5
3, followed by saponification, afforded 4 as a single regioisomer in
2% yield. A 15% yield of 4 was observed in the corresponding
reaction conducted without cobalt.
Our finding that cycloadditions are observed with Bu
(
1
2
4
166. (c) Hilt, G.; L u¨ ers, S.; Schmidt, F. Synthesis 2004, 634. (d) Hilt, G.;
1
5
Janikowski, J.; Hess, W. Angew. Chem., Int. Ed. 2006, 45, 5204. (e) Lautens,
M.; Tam, W.; Lautens, J. C.; Edwards, L. G.; Crudden, C. M.; Smith, A. C.
J. Am. Chem. Soc. 1995, 117, 6863. (f) Ma, B.; Snyder, J. K. Organome-
tallics 2002, 21, 4688. (g) Achard, M.; Mosrin, M.; Tenaglia, A.; Buono,
G. J. Org. Chem. 2006, 71, 2907.
4
NBH
4
/ZnI
2
in conjunction with literature reports documenting electron transfer
1
6
17
from Bu
may be involved in the catalysis. As shown in Scheme 2, coordination
of ZnI to 2′-hydroxychalcone 5 may afford complex 40. Preliminary
cyclic voltammetry studies indicate that 5 in the presence of ZnI
CH Cl shows two new irreversible reduction peaks (Ep,c -0.59, 0.36
4 4
NBH to acceptor substrates suggests that radical anions
(
12) See Supporting Information for complete experimental details.
2
(13) Swamy, S. J.; Lingaiah, P. Indian J. Chem., Sect A 1978, 16, 723.
(14) Roush, W. R.; Barda, D. A. J. Am. Chem. Soc. 1997, 119, 7402.
15) Lau, C. K.; Dufresne, C.; B e´ langer, P. C.; Pi e´ tr e´ , S.; Scheigetz, J. J. Org.
Chem. 1986, 51, 3038.
12
2
in
(
2
2
(
16) (a) Lucarini, M.; Pedulli, G. F.; Alberti, A.; Paradisi, C.; Roffia, S. J. Chem.
Soc., Perkin Trans. 2 1993, 2083. (b) Lucarini, M.; Pedulli, G. F. J.
Organomet. Chem. 1995, 494, 123.
V vs SCE, respectively) compared to 5 alone (Ep,c -1.25 V vs SCE).
The apparent shift in the half-wave reduction potentials to less negative
values is expected to parallel the promotion of electron transfer, and
may be attributed to carbonyl activation by ZnI
electron donors such as Co(I) or borohydride, 40 may undergo metal
ion-promoted single electron transfer to generate a chalcone radical
anion 41. Regioselective addition of 41 to isoprene should afford
a stabilized, allylic radical 42a which may undergo ring-closing
(
17) (a) Borhani, D. W.; Greene, F. D. J. Org. Chem. 1986, 51, 1563. (b) Roh,
Y.; Jang, H.-Y.; Lynch, V.; Bauld, N. L.; Krische, M. J. Org. Lett. 2002,
2
. In the presence of
4
, 611.
1
1a
(
18) Fukuzumi, S.; Okamoto, T. J. Am. Chem. Soc. 1993, 115, 11600.
18
(19) Quintana-Espinoza, P.; Y a´ n˜ ez, C.; Escobar, C. A.; Sicker, D.; Araya-
Maturana, R.; Squella, J. A. Electroanalysis 2006, 18, 521.
19
20
(20) Hilt, G.; Bolze, P.; Harms, K. Chem. Eur. J. 2007, 13, 4312.
JA803094U
J. AM. CHEM. SOC. 9 VOL. 130, NO. 29, 2008 9215