(1 H, s), 7.49 (4 H, s), 7.60 (2 H, AAABBA) and 7.64 (2 H, AAABBA); dC (75
hydrogen bond is capable of not only constructing well-defined
crystal structures but also inducing functional properties (SHG
response) to the resulting bulk assemblies.
This work was supported in part by a Grant-in-Aid for
Scientific Research (No. 12640508) from the Ministry of
Education, Science, Sports and Culture of Japan. We thank
Professor Tamotsu Inabe (Hokkaido University) for the use of
X-ray analytical facilities.
MHz, CDCl3) 79.45, 82.98, 89.48, 93.02, 111.73, 118.41, 122.58, 122.81,
127.82, 131.62, 132.56, 132.16 and 133.13; m/z (FD) 227 (M+, 100%).
∑ Connection of the tapes of 2 by C(sp2)–H…p contacts between the
pyridine a-proton and the terminal acetylene moiety (H…p centroid
distance 2.86 Å) might play a significant role in the polar assembly process.
Although there are face-to-face overlaps between the pyridine ring and the
p-phenylene unit of 2 in the crystal, the interplanar distance (3.80 Å) beyond
the sum of vdW radii (3.40 Å), so that the p-stacking interaction would play
a less important role in determining the packing.
Notes and references
† Crystal data for 1: C7H5N, M = 103.12, colorless rod, 0.60 3 0.20 3 0.20
mm, monoclinic, space group C2/c, a = 9.800(5), b = 8.684(5), c =
7.334(4) Å, b = 116.90(4)°, V = 556.6(6) Å3, Z = 4, rcalcd = 1.231 g
cm23, T = 193 K, Mo-Ka radiation. A total of 577 unique reflections
(2qmax = 54.2°) were collected, of which 456 observed reflections [I >
3s(I)] were used in the structure solution (direct methods) and refinement
(full-matrix least-squares) to give final R = 0.085 and Rw = 0.114. Residual
electron density is 0.42 e Å23. CCDC 153071. See http://www.rsc.org/
suppdata/cc/b1/b103689k/ for crystallographic data in .cif or other for-
mat.
‡ Crystal data for 2: C15H9N, M = 203.24, colorless prism, 0.20 3 0.20 3
0.15 mm, orthorhombic, space group Fdd2, a = 17.491(1), b = 7.748(1),
c = 15.5880(9) Å, V = 2112.5(4) Å3, Z = 8, rcalcd = 1.278 g cm23, T =
123 K, Mo-Ka radiation. A total of 595 unique reflections (2qmax = 55°)
were collected, of which 513 observed reflections [I > 3s(I)] were used in
the structure solution (direct methods) and refinement (full-matrix least-
squares) to give final R = 0.056 and Rw = 0.072. Residual electron density
is 0.30 e Å23. CCDC 164007.
§ Compound 2 was prepared by successive Sonogashira coupling of
4-bromoiodobenzene with 1 and trimethylsilylacetylene followed by
desilylation using Bu4NF. Spectroscopic data for 2; mp 180–181 °C
(Found: M+, 203.0733. C15H9N requires M, 203.0735); nmax (KBr)/cm21
3148, 2216, 2088, 1592, 1502, 1408 and 838; dH (300 MHz, CDCl3) 3.21 (1
H, s), 7.38 (2 H, AAAXXA), 7.50 (4 H, s) and 8.61 (2 H, AAAXXA); dC (75
MHz, CDCl3) 79.53, 83.06, 88.49, 93.27, 122.55, 123.02, 125.56, 131.17,
131.81, 132.24 and 149.89; m/z (FD) 203 (M+, 100%).
¶ Compound 3 was prepared by successive Sonogashira coupling of
4-bromoiodobenzene with 4-ethynylbenzonitrile and trimethylsilylacety-
lene followed by desilylation using Bu4NF. Spectroscopic data for 3; mp
196–198 °C (Found: M+, 227.0753. C17H9N requires M, 227.0735); nmax
(KBr)/cm21 3236, 2212, 1600, 1504 and 840; dH (300 MHz, CDCl3) 3.21
1 G. R. Desiraju, Crystal Engineering: The Design of Organic Solids,
Elsevier, Amsterdam, 1989; J.-M. Lehn, Supramolecular Chemistry,
VCH, Weinheim, 1995; G. R. Desiraju and T. Steiner, The Weak
Hydrogen Bond in Structural Chemistry and Biology, Oxford University
Press, Oxford, 1999; M. J. Calhorda, Chem. Commun., 2000, 801.
2 B. Gong, C. Zheng, H. Zeng and J. Zhu, J. Am. Chem. Soc., 1999, 121,
9766; J. Kawamata, K. Inoue and T. Inabe, Bull. Chem. Soc. Jpn., 1998,
71, 2777; K. D. M. Harris and M. D. Hollingsworth, Nature, 1989, 341,
19 and references cited therein.
3 R. W. Boyd, Nonlinear Optics, Academic Press, New York, 1992; Novel
Optical Materials and Applications, Eds. I.-C. Khoo, F. Simoni and C.
Umeton, John Wiley, New York, 1997; Nonlinear Optical Properties of
Organic Molecules and Crystals, Eds. D. S. Chemla and J. Zyss,
Academic Press, Boston, 1987; Molecular Nonlinear Optics: Materials,
Physics and Devices, Ed. J. Zyss, Academic Press, Boston, 1994.
4 N. R. Champness, A. N. Khlobystov, A. G. Majuga, M. Schröder and
N. V. Zyk, Tetrahedron Lett., 1999, 40, 5413.
5 Examples for the C–H…N interaction: R. Taylor and O. Kennard, J. Am.
Chem. Soc., 1982, 104, 5063; D. S. Reddy, B. S. Goud, K. Panneerselvam
and G. R. Desiraju, J. Chem. Soc., Chem. Commun., 1993, 663; D. S.
Reddy, D. C. Craig and G. R. Desiraju, J. Am. Chem. Soc., 1996, 118,
4090; F. A. Cotton, L. M. Daniels, G. R. Jordan, IV and C. A. Murillo,
Chem. Commun., 1997, 1673; M. Mascal, Chem. Commun., 1998, 303;
A. N. M. M. Rahman, R. Bishop, D. C. Craig and M. L. Scudder, Chem.
Commun., 1999, 2389; T. Steiner and G. R. Desiraju, Chem. Commun.,
1998, 891; V. R. Thalladi, A. Gehrke and R. Boese, New J. Chem., 2000,
24, 463.
6 For the crystal structures of related SHG active cyano compounds: G. R.
Desiraju and R. L. Harlow, J. Am. Chem. Soc., 1989, 111, 6757; P. J.
Langley, J. Hulliger, R. Thaimattam and G. R. Desiraju, New. J. Chem.,
1998, 1307.
Chem. Commun., 2001, 1454–1455
1455