J. Streuff et al. / Tetrahedron: Asymmetry 16 (2005) 3492–3496
3495
J.; Du Bois, J. Angew. Chem., Int. Ed. 2004, 43, 4349; (f)
Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am.
Chem. Soc. 2004, 126, 15378; (g) Timokhin, V. I.;
Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003,
125, 12996; (h) Brice, J. L.; Harang, J. E.; Timokhin, V. I.;
Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127,
2868.
reomerically pure bisazaglycolate C. Subsequent hydro-
lysis of this intermediate releases the free amino alcohol
product 8 and regenerates A to close the catalytic cycle.
Since 8 is produced as a single stereoisomer, intermedi-
ate C must be homochiral, that is, it must contain two
azaglycolate ligands of identical absolute configuration.
Therefore, the catalytic aminohydroxylation of acryl-
amide 1 with catalyst B represents the rare case of a
truly stereoselective self-replication of a chiral ligand.13
As mentioned before, we deduced a pronounced role
of the amide on the overall stereochemical course of
the reaction. This should be influential at two stages.
First, the conformation of the square-planar intermedi-
ate B might be organised from intramolecular hydrogen
bonding between the non-transferable oxo-ligand and
the amide-NH group.14
3. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483.
4. Review on imidoosmium compounds: Muniz, K. Chem.
˜
Soc. Rev. 2004, 33, 166.
5. Reviews on aminohydroxylation: (a) Bodkin, J. K.;
McLeod, M. D. J. Chem. Soc., Perkin Trans. 1 2002,
2733; (b) Bolm, C.; Hildebrand, J. P.; Muniz, K. In
˜
Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-
VCH: Weinheim, 2000; p 299; (c) Schlingloff, G.; Sharp-
less, K. B. In Asymmetric Oxidation Reactions: A Practical
Approach; Katsuki, T., Ed.; Oxford University Press:
London, 2001; p 104; (d) Nilov, D.; Reiser, O. Adv. Synth.
Catal. 2002, 344, 1169; (e) OÕBrien, P. Angew. Chem., Int.
Ed. 1999, 38, 326.
While this does not necessarily need to be the only con-
formation in solution, the kinetic preference of B is suf-
ficient to dominate the catalysis. Within the subsequent
step of olefin aminohydroxylation, the observed com-
plete face selectivity might again arise from a preorgani-
sation through hydrogen bonding. Obviously, such a
preorganisation seems to be strongly influenced by addi-
tional substituents as in the cases of substrates 6 and 7.
It agrees well with a substrate, such as 5, which due to its
symmetrical amide substitution pattern cannot distin-
guish the prochiral olefin faces through hydrogen bond-
ing. In addition, N-phenyl-N-(a-phenylethyl)-acryl-
amide as substrate only showed low conversion and no
stereoselectivity (1:1-mixture and 14% yield after 36 h),
which strengthens the importance of an amide NH on
the overall catalytic course.
6. For leading references: (a) Li, G.; Chang, H.-T.; Sharpless,
K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 451; (b)
Bruncko, M.; Schlingloff, G.; Sharpless, K. B. Angew.
Chem., Int. Ed. 1997, 36, 1483; (c) Reddy, K. L.; Sharpless,
K. B. J. Am. Chem. Soc. 1998, 120, 1207; (d) Gooßen, L.
J.; Liu, H.; Dress, K. R.; Sharpless, K. B. Angew. Chem.,
Int. Ed. 1999, 38, 1080.
7. Li, G.; Sharpless, K. B. Acta Chem. Scand. 1996, 50, 649.
8. (a) Rubin, A. E.; Sharpless, K. B. Angew. Chem., Int. Ed.
1997, 36, 2637; (b) Pringle, W.; Sharpless, K. B. Tetra-
hedron Lett. 1999, 40, 5150; See also: (c) Kolb, H. C.; Finn,
M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40,
2004.
9. Fokin, V. V.; Sharpless, K. B. Angew. Chem Int. Ed. 2001,
40, 3455.
10. Selected analytical data: (À)-8: [a]D = À50 (c 0.3, acetone).
1H NMR (300 MHz, DMSO-d6): d = 1.36 (d, J = 7.0 Hz,
3H), 2.36 (s, 3H), 2.67–2.76 (m, 1H), 2.94–2.99 (m, 1H),
3.91–4.00 (m, 1H), 4.89 (quin, J = 4.7 Hz, 1H), 5.73 (d,
J = 6.0 Hz, 1H), 7.19–7.48 (m, 8H), 7.65 (s, 1H), 7.68 (s,
1H), 8.05 (d, J = 8.1 Hz, 2H). 13C NMR (75 MHz,
DMSO-d6): d = 21.4, 22.5, 47.2, 48.0, 71.0, 126.4, 127.0,
128.6, 130.0, 137.9, 143.0, 144.7, 171.0. IR (KBr): 3471,
3325, 3304, 3032, 2985, 2929, 2870, 1653, 1527, 1456, 1408,
1315, 1213, 1161, 1109, 1090, 1018, 937, 872, 815, 769, 706,
671 cmÀ1. MS (EI, eV): m/z (%): 362.2 (12) [M]+, 347.2
(3), 251.2 (1), 214.2 (17), 207.2 (20), 179.2 (52), 155.1 (44),
139.1 (3), 120.2 (55), 105.2 (100), 91.2 (45), 75.1 (13), 60.2
(7). HRMS: calcd for C19H22N2O4S: 362.1300. Found:
362.1297. Compound 13: [a]D = À141 (c 0.23, MeOH). 1H
NMR (300 MHz, DMSO-d6): d = 1.22 (d, J = 6.97 Hz,
3H), 1.28 (d, J = 6.97 Hz, 3H), 2.36 (s, 3H), 4.19 (m, 2H),
4.72 (m, 2H), 7.14–7.30 (m, 12H), 7.61 (d, J = 8.28 Hz,
2H), 7.68 (d, = 8.10 Hz, 1H), 7.96 (d, J = 7.73 Hz, 1H).
13C NMR (75 MHz, DMSO-d6): d = 21.1, 22.1, 22.5, 48.0,
48.3, 59.1, 72.3, 125.9, 126.1, 126.7, 126.8, 128.25, 128.31,
129.4, 142.6, 143.9, 144.2, 168.1, 169.7. IR (KBr): 3417,
3290, 3062, 3028, 2974, 2960, 2927, 1659, 1539, 1508, 1448,
1427, 1336, 1161, 1078, 1022, 941, 761, 698, 557 cmÀ1. MS
(EI, eV): m/z (%): 509.3 [M]+, 362.2 (8), 361.2 (25), 355.2
(5), 332.2 (10), 318.2 (2), 257.1 (15), 240.1 (1), 215.2 (5),
214.1 (15), 191.2 (4), 177.2 (20), 161.1 (1), 155.1 (10), 139.1
(4), 132.1 (0), 120.2 (25), 105.1 (100), 91.1 (10), 79.1 (5),
73.1 (1), 60.1 (8), 57.2 (1). HRMS: calcd for C27H31N3O5S:
509.1984. Found: 509.1989. Compound 14: [a]D = À78 (c
0.1, DMSO). 1H NMR (300 MHz, DMSO-d6): d = 1.04
(d, J = 6.97 Hz, 3H), 1.37 (d, J = 6.97 Hz, 3H), 2.32 (s,
3H), 4.24 (m, 2H), 4.64 (m, 1H), 4.90 (quin, J = 6.97, 1H),
3. Conclusion
In summary, we have described the first asymmetric
aminohydroxylations of chiral, non-racemic acryl
amides, which proceed exclusively in the second cycle.
The assumed stereoselectivity model of hydrogen bond-
ing should lead to a potential design of new ligands for
this type of oxidation catalysis.15 Mechanistic investiga-
tion along these lines is currently under investigation.
Acknowledgements
We are grateful to the Fonds der Chemischen Industrie
for generous ongoing support. J. S. thanks Bonn Uni-
versity for a Diploma fellowship.
References
1. Ba¨ckvall, J.-E. Modern Oxidation Methods; Wiley-VCH:
Weinheim, 2004.
2. Selected recent examples: (a) Modern Amination Reactions;
Ricci, A., Ed.; Wiley-VCH: Weinheim, 2000; (b) Dono-
hoe, T. J.; Johnson, P. D.; Cowley, A.; Keenan, M. J. Am.
Chem. Soc. 2002, 124, 12934; (c) Alexanian, E. J.; Lee, C.;
So¨rensen, E. J. J. Am. Chem. Soc. 2005, 127, 7690; (d)
Dauban, P.; Saniere, L.; Tarrade, A.; Dodd, R. H. J. Am.
Chem. Soc. 2001, 123, 7707; (e) Fiori, K. W.; Fleming, J.