C O M M U N I C A T I O N S
Figure 3. E. coli strain differentiation by MGNPs 3 and 4.
In conclusion, we demonstrate the potential of sugar-coated
magnetic nanoparticles for fast bacterial detection and removal,
which provides an attractive avenue for pathogen decontamination
and diagnostic applications.
Figure 2. (a) Representative fluorescence microscopic images of captured
E. coli. The concentration (cells/mL) of bacteria incubated with MGNP 3
is indicated on each image (see Supporting Information for experimental
details). (b-d) TEM images of MGNP 3/E. coli complexes.
Acknowledgment. We are grateful for DARPA (Grant HR0011-
7-1-0003), the American Heart Association (0715118B), and
0
University of Toledo for financial support. We thank Profs. Terry
Bigioni and William Gunning (University of Toledo) for TEM
training, Prof. Paul Orndorff (North Carolina State University) for
providing us the E. coli ORN178 and ORN208 strains, and Mr.
Vivek Tewari and Guang Cai for their help in research.
along the pili10 of E. coli cells (Figure 2b-d, Figure S4). To the
best of our knowledge, although glyco-nanoparticles have been
studied as bioprobes for pathogens,11 this is the first time that
MGNPs have been used for bacterium detection and decontamina-
Supporting Information Available: Procedures for MGNP fab-
rication and characterization; procedures for pathogen detection and
differentiation; selected NMR spectra. This material is available free
of charge via the Internet at http://pubs.acs.org.
tion.1
2,13
The capture efficiency using MGNP 3 is much higher than the
0∼30% range typically observed with antibody or lectin func-
1
14,15
tionalized magnetic particles,
which can be difficult to fabricate
because of challenges in immobilizing biomacromolecules.15 Fur-
References
thermore, the orientation of the antibody/lectin on a NP surface is
(1) (a) Katz, E.; Willner, I. Angew. Chem., Int. Ed. 2004, 42, 6042. (b) de la
Fuente, J. M.; Penades, S. Biochim. Biophys. Acta 2006, 1760, 636.
difficult to control, which may affect their binding capacities.16
(
(
2) Lingwood, C. A. Curr. Opin. Chem. Biol. 1998, 2, 695.
3) Gu, H.; Xu, K.; Xu, C.; Xu, B. Chem. Commun. 2006, 941.
To further demonstrate the advantages of MGNPs, we explore
the possibility of bacterium differentiation. It is known that several
bacteria may bind with the same carbohydrate albeit with various
affinities.17 This provides a unique opportunity to use a MGNP
array system, where the selective binding of a microbe to various
carbohydrates will lead to different responses. The resulting
characteristic response patterns18 will then allow differentiation of
bacteria. As a proof-of-principle, we synthesized galactose (Gal)
functionalized MGNP 4 in a similar manner as Man-MGNP 3 and
investigated the usage of these two MGNPs to rapidly detect and
differentiate three E. coli strains: ORN178, ORN208 a mutant strain
with greatly reduced mannose binding affinity,19 and an environ-
mental strain (ES) isolated from Lake Erie with unknown carbo-
hydrate binding specificity. While 65% of ORN178 was captured
by MGNP 3, only 15% was caught by MGNP 4 (Table S3). The
mutant strain ORN208 can still be trapped by both MGNPs,
although at lower levels. With the ES strain, high capture efficien-
cies of 70% and 75% were achieved by MGNPs 3 and 4,
respectively, suggesting its strong binding with both mannose and
galactose.
(4) Zhao, X.; Hilliard, L. R.; Mechery, S. J.; Wang, Y.; Bagwe, R. P.; Jin,
S.; Tan, W. Proc. Nat. Acad. Sci., U.S.A. 2004, 101, 15027.
(
5) Lin, P.-C.; Ueng, S.-H.; Yu, S.-C.; Jan, M.-D.; Adak, A. K.; Yu, C.-C.;
Lin, C.-C. Org. Lett. 2007, 9, 2131.
(6) For a random absorption approach, see: Hor a´ k, D.; Babi cˇ , M.; Jendelov a´ ,
P.; Herynek, V.; Trchov a´ , M.; Pientka, Z.; Pollert, E.; H a´ jek, M.; Sykov a´ ,
E. Bioconjugate Chem. 2007, 18, 635.
(
7) Kell, A. J.; Simard, B. Chem. Commun. 2007, 1227.
(8) Lis, H.; Sharon, N. Chem. ReV. 1998, 98, 637.
9) Jelinek, R.; Kolusheva, S. Chem. ReV. 2004, 104, 5987.
10) Kim, B.-S.; Yang, W.-Y.; Ryu, J.-H.; Yoo, Y.-S.; Lee, M. Chem. Commun.
005, 2035 and references cited therein.
(
(
2
(11) Schofield, C. L.; Field, R. A.; Russell, D. A. Anal. Chem. 2007, 79, 1356
and references cited therein.
(
12) For recent examples of other approaches using mannose for pathogen
detection, see refs 10, 13, and the following: Shen, Z.; Huang, M.; Xiao,
C.; Zhang, Y.; Zeng, X.; Wang, P. G. Anal. Chem. 2007, 79, 2312.
13) Disney, M. D.; Seeberger, P. H. Chem. Biol. 2004, 11, 1701.
14) Chang, S.-C.; Adriaens, P. EnV. Eng. Sci. 2007, 24, 58.
15) Porter, J.; Robinson, J.; Pickup, R.; Edwards, C. J. Appl. Microbiol. 1998,
84, 722.
(
(
(
(
16) Luk, Y.-Y.; Tingey, M. L.; Dickson, K. A.; Raines, R. T.; Abbott, N. L.
J. Am. Chem. Soc. 2004, 126, 9024.
(17) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed.
998, 37, 2754.
1
(
18) (a) Wright, A. T.; Anslyn, E. V. Chem. Soc. ReV. 2006, 35, 14. (b) Albert,
K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T.
P.; Walt, D. R. Chem. ReV. 2000, 100, 2595. (c) For a recent application
of pattern recognition in array sensing, see: Miranda, O. R.; You, C.-C.;
Phillips, R.; Kim, I.-B.; Ghosh, P. S.; Bunz, U. H. F.; Rotello, V. M. J.
Am. Chem. Soc. 2007, 129, 9856.
The response patterns of the three E. coli strains to Man-MGNP
3
and Gal-MGNP 4 allow us to easily determine the microbial
identity: ORN178 (Man strong, Gal weak), ORN208 (Man weak,
Gal weak), and ES (Man strong, Gal strong) (Figure 3). The ability
to distinguish pathogen strains can have clinical applications since
the virulence of many pathogens can be correlated with carbohydrate
binding specificity.20 Moreover, the nondestructive nature of MGNP
binding can allow the concentration and recovery of pathogens and
further analysis by other techniques.1
(
(
(
19) Harris, S. L.; Spears, P. A.; Havell, E. A.; Hamrick, T. S.; Horton, J. R.;
Orndorff, P. E. J. Bacteriol. 2001, 183, 4099.
20) Stevens, J.; Blixt, O.; Tumpey, T. M.; Taubenberger, J. K.; Paulson, J.
C.; Wilson, I. A. Science 2006, 312, 404.
21) Tang, Y.-W.; Procop, G. W.; Persing, D. H. Clin. Chem. 1997, 43, 2021.
3,21
JA076086E
J. AM. CHEM. SOC.
9
VOL. 129, NO. 44, 2007 13393