Page 5 of 5
Journal of the American Chemical Society
through electrochemical studies using boron doped diamond
32
electrodes. In both of the aforementioned examples, per-
oxide dianion is not implicated as the oxidant and thus far
represent the few examples of metal free oxidations of CO
(3) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
1987, 16, 405–408.
(
4) Kireev, A.; Mukhin, V.; Kireev, S.; Klushin, V.; Tkachenko, S.
Russ. J. Appl. Chem. 2009, 82, 169–171.
(5) (a) Curtis, M. D.; Han, K. R. Inorg. Chem. 1985, 24, 378–
82; (b) Ellul, C. E.; Saker, O.; Mahon, M. F.; Apper-
3
to yield CO
2
.
ley, D. C.; Whittlesey, M. K. Organometallics 2008, 27,
100–108; (c) Blosser, P. W.; Gallucci, C., Judith; Wojci-
cki, A. J. Mol. Cat. A: Chem. 2004, 224, 133–144; (d) Oga-
sawara, M.; Maseras, F.; Gallego-Planas, N.; Kawamura, K.;
Ito, K.; Toyota, K.; Streib, W. E.; Komiya, S.; Eisenstein, O.;
Caulton, K. G. Organometallics 1997, 16, 1979–1993; (e)
Letts, J. B.; Mazanec, T. J.; Meek, D. W. Organometallics
1983, 2, 695–704; (f) Siegl, W. O.; Lapporte, S. J.; Coll-
man, J. P. Inorg. Chem. 1973, 12, 674–677; (g) Dzik, W. I.;
Creusen, C.; de Gelder, R.; Peters, T. P. J.; Smits, J.
M. M.; de Bruin, B. Organometallics 2010, 29, 1629–1641;
The results presented herein demonstrate that peroxide
dianion is able to react with CO without the assistance of a
transition metal. Currently, it is unclear what role cryptand
6
mBDCA-5t-H plays in the transformation besides function-
ing as a solubilizing agent for the peroxide dianion and as
a host for the carbonate dianion reaction product. In situ
generation of hydrogen peroxide via proton transfer from
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
h) Siegl, W. O.; Lapporte, S. J.; Collman, J. P. Inorg. Chem.
2 2
the cryptand is ruled out on the basis that H O does not
1971, 10, 2158–2165; (i) Dzik, W. I.; Smits, J. M. M.; Reek, J.
N. H.; de Bruin, B. Organometallics 2009, 28, 1631–1643; (j)
D u¨ rr, S.; Zarzycki, B.; Ertler, D.; Ivanovi c´ -Burmazovi c´ , I.; Ra-
dius, U. Organometallics 2012, 31, 1730–1742.
react with CO without a UV light source. Peroxide dianion
is a key actor in many important systems, such as lithium-
3
3
air batteries, where it is the primary discharge product.
CO, although not commonly observed or generated during
typical lithium-air cell cycling, may be observed when a for-
(6) (a) Lawson, H. J.; Atwood, J. D. J. Am. Chem. Soc. 1988,
1
2
10, 3680–3682; (b) Kelley, M. R.; Rohde, J.-U. Inorg. Chem.
013, 52, 2564–2580; (c) Lawson, H. J.; Atwood, J. D. J. Am.
Chem. Soc. 1989, 111, 6223–6227.
34
mamide solvent such as DMF is used and its oxidation by
(7) Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang, Z. Phys.
Chem. Chem. Phys. 2014, 16, 12488–12494.
(8) Choi, Y. M.; Abernathy, H.; Chen, H.-T.; Lin, M. C.; Liu, M.
ChemPhysChem 2006, 7, 1957–1963.
peroxide dianion provides a possible route to lithium car-
bonate formation, a serious problem in current lithium-air
(
9) Pushkarev, V. V.; Kovalchuk, V. I.; d’Itri, J. L. J. Phys. Chem.
B 2004, 108, 5341–5348.
3
5
cells.
(10) Zhao, Y.; Teng, B.-T.; Wen, X.-D.; Zhao, Y.; Chen, Q.-P.;
In conclusion, the encapsulation of peroxide dianion in the
cavity of a hexacarboxamide cryptand results in an organic-
solvent soluble source of peroxide dianion, permitting its in-
trinsic properties to be explored. The unprecedented oxi-
dation of CO with a metal-free peroxide dianion results in
the formation of carbonate which is also recognized by the
anion receptor. Labeling studies confirm that the resulting
carbonate is indeed derived from the coupling of peroxide
and CO. Thus, transition metals are not an absolutely re-
quired ingredient in facilitating CO oxidation by peroxide
dianion. Identification of this mode of reactivity may pro-
vide insight into decomposition modes operative in cycling
lithium air cells, while serving to corroborate results from
studies of peroxide dianion on CO-oxidizing ceria surfaces.
Zhao, L.-H.; Luo, M.-F. J. Phys. Chem. C 2012, 116, 15986–
1
5991.
(11) Lopez, N.; Graham, D. J.; McGuire, R.; Alliger, G. E.; Shao-
Horn, Y.; Cummins, C. C.; Nocera, D. G. Science 2012, 335,
4
50–453.
(12) Ullman, A. M.; Sun, X.; Graham, D. J.; Lopez, N.; Nava, M.;
De Las Cuevas, R.; M u¨ ller, P.; Rybak-Akimova, E. V.; Cum-
mins, C. C.; Nocera, D. G. Inorg. Chem. 2014, 53, 5384–5391.
(13) Please see the SI for a line drawing of the hydrogen bonding
anion receptor.
(14) Kang, S. O.; VanderVelde, D.; Powell, D.; Bowman-James, K.
J. Am. Chem. Soc. 2004, 126, 12272–12273.
+
(
15) TBA = Tetrabutylammonium, N(Bu)4 .
(16) Pramanik, A.; Emami Khansari, M.; Powell, D. R.; Fron-
czek, F. R.; Hossain, M. A. Org. Lett. 2014, 16, 366–369.
17) Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res.
2009, 42, 33–44.
18) Kang, S. O.; Hossain, M. A.; Bowman-James, K. Coord. Chem.
Rev. 2006, 250, 3038–3052.
(
(
(19) Please see the SI for additional details.
20) Wu, G. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 52, 118–
69.
(
Acknowledgement This research was supported by the
National Science Foundation (NSF) through the Centers for
Chemical Innovation (CCI), Solar Fuels grant CHE-1305124
and U.S. DOE Office of Science under award DE-SC0009565
1
(21) Smith, M.; Steuernagel, S.; Whitfield, H. Solid State Nucl.
Magn. Reson. 1995, 4, 313–316.
(22) Leskes, M.; Drewett, N. E.; Hardwick, L. J.; Bruce, P. G.;
Goward, G. R.; Grey, C. P. Angew. Chem. Int. Ed. 2012, 51,
8
560–8563.
(23) Shima, T.; Hampel, F.; Gladysz, J. A. Angew. Chem. Int. Ed.
004, 43, 5537–5540.
(
DGN). Grants from the NSF also provided instrument sup-
port to the DCIF at MIT (Grants CHE-9808061 and DBI-
729592). The X-ray diffractometer was purchased with
2
(
24) Kong, X.; O’Dell, L. A.; Terskikh, V.; Ye, E.; Wang, R.; Wu, G.
9
J. Am. Chem. Soc. 2012, 134, 14609–14617.
funding assistance from the NSF (Grant CHE-0946721).
We are grateful to Michael Huynh for his assistance with
NMR calculations, Rebecca de Las Cuevas for assistance
with initial reactivity studies and Ioana Knopf for a gift of
+
(
25) PPN
=
Bis(triphenylphosphine)iminium,
[N(PPh3)2] .
3
6
[PPN][HCO ] is prepared via a literature procedure
3
.
(26) Brooks, S. J.; Gale, P. A.; Light, M. E. Chem. Commun. 2006,
344–4346.
4
(
27) Akhuli, B.; Ravikumar, I.; Ghosh, P. Chem. Sci. 2012, 3, 1522–
1530.
28) Ravikumar, I.; Ghosh, P. Chem. Commun. 2010, 46, 1082–
[
3
PPN][HCO ]. The authors also acknowledge the Robert
(
Bosch Company for partial financial support.
1
084.
(29) Elbe, G. v. J. Am. Chem. Soc. 1932, 54, 821–822.
(30) Laming, F. P.; Buxton, G.; Wilmarth, W. K. J. Phys. Chem.
Supporting Information Available: Provided are full de-
tails of experimental procedures for the synthesis of all new sub-
stances together with characterization data including details of
X-ray diffraction studies and Cartesian coordinates for structures
1
969, 73, 867–873.
(
(
31) Gorse, R.; Volman, D. J. of Photochem. 1972-1973, 1, 1–10.
32) Kisacik, I.; Stefanova, A.; Ernst, S.; Baltruschat, H. Phys.
Chem. Chem. Phys. 2013, 15, 4616–4624.
33) Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.;
Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A.
J. Electrochem. Soc. 2011, 159, R1–R30.
(
(
34) Chen, Y.; Freunberger, S. A.; Peng, Z.; Bard e´ , F.; Bruce, P. G.
J. Am. Chem. Soc. 2012, 134, 7952–7957.
Notes and References
(35) Luntz, A. C.; McCloskey, B. D. Chem. Rev. 2014, 114, 11721–
1750.
1
(1) (a) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M.
Chem. Soc. Rev. 2009, 38, 89–99; (b) Fujita, E. Coord. Chem.
Rev. 1999, 185-186, 373 – 384; (c) Li, C. W.; Ciston, J.;
Kanan, M. W. Nature 2014, 508, 504–507; (d) Torella, J. P.;
Gagliardi, C. J.; Chen, J. S.; Bediako, D. K.; Coln, B.;
Way, J. C.; Silver, P. A.; Nocera, D. G. Proc. Natl. Acad. Sci.
U.S.A. 2015, 112, 2337–2342.
(
36) Meckfessel, L. M. Synthesis and Reactivity of Tungsten(0) Hy-
droxo and Bicarbonato Complexes. Ph.D. thesis, Texas A&M,
1
994.
(
2) Royer, S.; Duprez, D. ChemCatChem 2011, 3, 24–65.
ACS Paragon Plus Environment
4