Journal of Materials Chemistry C
Paper
1 – Suzuki coupling:33 To a degassed solution of 440 mg (0.71 interesting photoconductivity behaviour and suggests that the
mmol) of 4 in 50 ml of dimethoxyethane, 227 mg (1.8 mmol) of enolic structure might lead to conjugation. The poly(DTI) shows
2-thienyl-boronic acid was added. Aer 10 min stirring under excellent stability during electrochemical cycling, with a notably
N2, 80 mg (0.1 mmol) of Pd(dppf)Cl2 was added. Then the low reduction potential. The results presented here show the
mixture was heated for 30 min to slight reux (Tbath 90 ꢂC) and 2 promise that extended indigos and indigo-based polymers can
ml of 1 M K2CO3 was added. Stirring and heating were have for organic electronics.
continued for 1 h, and then the mixture was set aside at room
temperature for 16 h. Diethylether (200 ml) was added and the
organic layer was washed with water. Aer evaporation of the
Acknowledgements
solvent, the residue (570 mg, red oil) was chromatographed on We are grateful for support from the Austrian Science Foun-
silica gel with cyclohexane/AcOEt (9 : 1). Starting materials 4 dation, FWF, within the Wittgenstein Prize of N. S. Saricici
(120 mg, 44%, Rf ¼ 0.48), 5b (130 mg, 29%, Rf ¼ 0.21) and 5c Solare Energie Umwandlung Z222-N19 and the Translational
(110 mg, 23%, Rf ¼ 0.32) were isolated as red solids. Recrys- Research Project TRP 294-N19 “Indigo: From ancient dye to
tallization from cyclohexane gave the analytically pure products. modern high-performance organic electronic circuits”.
Procedure 2 – Stille coupling:34 496 mg (0.8 mmol) of 4 was
dissolved in 60 ml of dry toluene. The mixture was degassed by
15 min N2 bubbling. Next, 0.6 ml (2 mmol) of 2-(tributylstannyl)
Notes and references
thiophene was added and N2 bubbling was continued for 15
min. Aer addition of 9.2 mg (0.008 mmol) of tetrakis-triphe-
nylphosphine palladium(0), the mixture was stirred for 16 h at
90 ꢂC. Aer evaporation of volatile products, the residue was
chromatographed on silica gel (Cy/AcOEt, 9 : 1).
1 M. Seefelder, Indigo in culture, science, and technology,
ecomed, Landsberg, Germany, 2nd edn, 1994.
2 H. Schmidt, Chem. Unserer Zeit, 1997, 31, 121–128.
3 E. Steingruber, Indigo and Indigo Colorants in Ullmann's
Encycl. Ind. Chem., 2007.
Starting materials 4 (92 mg, 18%), 5b (170 mg, 33%), 5c
(120 mg, 23%)
4 M. Irimia-Vladu, E. D. Głowacki, P. A. Troshin,
G. Schwabegger, L. Leonat, D. K. Susarova, O. Krystal,
M. Ullah, Y. Kanbur, M. A. Bodea, V. F. Razumov, H. Sitter,
S. Bauer and N. S. Saricici, Adv. Mater., 2012, 24, 375–380.
5 E. D. Głowacki, L. Leonat, G. Voss, M.-A. Bodea, Z. Bozkurt,
A. M. Ramil, M. Irimia-Vladu, S. Bauer and N. S. Saricici,
AIP Adv., 2011, 1, 042132–042137.
6 E. D. Głowacki, M. Irimia-Vladu, M. Kaltenbrunner,
J. G˛asiorowski, M. S. White, U. Monkowius, G. Romanazzi,
G. P. Suranna, P. Mastrorilli, T. Sekitani, S. Bauer,
T. Someya, L. Torsi and N. S. Saricici, Adv. Mater., 2013,
25, 1563–1569.
7 E. D. Głowacki, G. Voss and N. S. Saricici, Adv. Mater., 2013,
25, 6783–6800.
8 E. Wang, W. Mammo and M. R. Andersson, Adv. Mater.,
2014, 26, 1801–1826.
9 R. Stalder, J. Mei, K. R. Graham, L. A. Estrada and
J. R. Reynolds, Chem. Mater., 2014, 26, 664–678.
5b. IR: among others 3107, 3074 (all vw), 2974, 2927 (all w),
1703, 1600, 1435, 1147 (all s). – 1H-NMR (CDCl3): 1.70 (s, tBOC
3
3
CH3, 18H), 7.17 (dd, J ¼ 5.0 Hz, J ¼ 3.6 Hz, 2H, 4,40-Hthienyl),
7.44 (dd, 3J ¼ 5.0 Hz, 4J ¼ 0.9 Hz, 2H, 5,50-Hthienyl), 7.49 (dd, 3J ¼
8.0 Hz, 4J ¼ 1.4 Hz, 2H, 5.50-H), 7.52 (dd, 3J ¼ 3.6 Hz, 4J ¼ 0.9 Hz,
2H, 3,30-Hthienyl), 7.78 (d, 3J ¼ 8.0 Hz, 2H, 4,40-H), 8.33 (d, 4J ¼ 1.4
Hz, 2H, 7,70-H). 13C-NMR (CDCl3): 28.2 (tBOC CH3), 113.5 (7,70-
C), 121.6, 124.7, 125.4, 127.2, 128.6 (4,40- and 5,50-C, and 3,30-,
4,40- and 5,50-Cthienyl) – only the signals of those carbon atoms
attached to hydrogens are given. HR ESI-MS: m/z found for
[M + H]+ 627.1611, m/z calculated for [M + H]+ 627.1618.
5c. (Mono-thienyl byproduct). IR: among others 3120 (vw),
2972, 2924 (all w), 1734, 1672, 1600, 1421, 1141 (all s). 1H-NMR
(CDCl3): 1.64 (s, tBOC CH3, 9H), 1.69 (s, CH3, 9H), 7.16 (dd, 3J ¼
5.1 Hz, 3J ¼ 3.7 Hz, 1H, 4-Hthienyl), 7.37 (dd, 3J ¼ 8.1 Hz, 4J ¼ 1.6
Hz, 1H, 50-H), 7.44 (dd, 3J ¼ 5.1 Hz, 4J ¼ 1.5 Hz, 1H, 3-Hthienyl),
7.50 (dd, 3J ¼ 8.0 Hz, 4J ¼ 1.0 Hz, 1H, 5-H), 7.52 (dd, 3J ¼ 3.7 Hz, 10 S. Qu and H. Tian, Chem. Commun., 2012, 48, 3039–3051.
4J ¼ 1.5 Hz, 1H, 5-Hthienyl), 7.63 (d, 3J ¼ 8.1 Hz, 1H, 40-H), 7.78 (d, 11 C. B. Nielsen, M. Turbiez and I. McCulloch, Adv. Mater.,
3J ¼ 8.0 Hz, 1H, 4-H), 8.30 (s, 1H, 70-H), 8.31 (s, 1H, 7-H). HR ESI-
2012, 25, 1859–1880.
MS: m/z found for [M + H]+ 623.0859, m/z calculated for [M + H]+ 12 M. J. Robb, S.-Y. Ku, F. G. Brunetti and C. J. Hawker, J. Polym.
623.0846.
Sci., Part A: Polym. Chem., 2013, 51, 1263–1271.
13 C. Guo, B. Sun, J. Quinn, Z. Yan and Y. Li, J. Mater. Chem. C,
2014, 2, 4289–4296.
14 E. D. Głowacki, G. Voss, K. Demirak, M. Havlicek, N. Sunger,
A. C. Okur, U. Monkowius, J. G˛asiorowski, L. Leonat and
N. S. Saricici, Chem. Commun., 2013, 49, 6063–6065.
Conclusions
We have presented synthesis routes to obtain an extended
indigo derivative, 6,60-dithienylindigo (DTI), for application as
an organic semiconductor. We utilize the latent pigment tech- 15 A. Baeyer and V. Drewsen, Chem. Ber., 1882, 15, 2856–2864.
nique of introducing thermolabile solubilizing groups, which 16 P. Susse and R. Wasche, Naturwissenschaen, 1978, 65, 157.
allows chemical manipulation of the otherwise insoluble indigo 17 E. F. Paulus, F. J. J. Leusen and M. U. Schmidt,
moiety. DTI shows promising ambipolar transport behaviour in
CrystEngComm, 2007, 9, 131.
FET devices, with impressive operational stability in air. By 18 Z. Hao and A. Iqbal, Chem. Soc. Rev., 1997, 26, 203.
¨
electropolymerization we could produce poly(DTI). This semi- 19 W. Luttke, H. Hermann and M. Klessinger, Angew. Chem.,
conjugated polymer with indigo in the main chain shows
Int. Ed. Engl., 1966, 5, 598–599.
8096 | J. Mater. Chem. C, 2014, 2, 8089–8097
This journal is © The Royal Society of Chemistry 2014