5764
1
N,2-Diphenyl propeneamide (3a): IR (neat) ꢀ (cm^1) 1652 (CO), 3230 (NH); H NMR ꢁ (ppm):
5.72 (s, 1H, CH2), 6.29 (s, 1H, CH2), 7.10±7.52 (m, 11H, 2Ph and NH); 13C NMR ꢁ (ppm):
119.93, 123.36, 124.63, 128.87, 129.02, 136.67, 137.65, 145.11, 165.20; GC±MS m/z 223 (M+).
Anal. calcd for C15H13NO: C, 80.69; H, 5.87; N, 6.27. Found: C, 80.75; H, 6.08; N, 6.34. trans-N-
Phenyl-3-tolyl propeneamide (40a): IR (neat) ꢀ (cm^1) 1656 (CO), 3286 (NH); H NMR ꢁ (ppm):
1
2.36 (s, 3H, CH3), 6.53 (d, 1H, J=15.5 Hz, COCH), 7.10±7.62 (m, 10H, arom. and NH), 7.72
(d, 1H, J=15.5 Hz, CH-tolyl); 13C NMR ꢁ (ppm): 21.45, 119.98, 124.40, 127.96, 129.06, 129.61,
131.87, 138.10, 140.32, 142.41, 164.48; GC±MS m/z 237 (M+). Anal. calcd for C16H15NO: C,
80.98; H, 6.37; N, 5.90. Found: C, 79.95; H, 6.37; N, 5.85.
In conclusion, the palladium-catalyzed carbonylative coupling of anilines with aryl alkynes and
syngas provides a remarkably ecient method for the synthesis of new acrylamides in high isolated
yields and regioselectivities. This methodology demonstrates again the eciency of palladium
catalysts in useful carbonylative coupling reactions. We are currently examining the application
of this catalytic system to dierent classes of substances including primary and secondary alkyl
amines and diamines with terminal and internal alkyl and aromatic alkynes, diynes, and others.
Acknowledgements
We thank the King Fahd University of Petroleum and Minerals (KFUPM-Saudi Arabia) for
®nancial support of this project.
References
1. (a) Zabicky, J. The Chemistry of Amides; Interscience Publishers±Wiley: New York, 1970; (b) Ghosh, M. K.;
Mittal, K. L. Polyimides: Fundamental Applications; Marcel Dekker: New York, 1996.
2. (a) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation: Direct Synthesis of Carbonyl Compounds;
Plenum Press: New York, 1991.
3. (a) El Ali, B.; Alper, H. In Hydrocarboxylation and Hydroesteri®cation Reactions Catalyzed by Transition Metal
Complexes; Beller, M.; Bolm, C., Eds.; Wiley: New York, 1998; p. 47.
4. (a) Yamada, S. I.; Kasai, Y.; Shioiri, T. Tetrahedron Lett. 1973, 18, 1595; (b) Naito, T.; Tada, Y.; Ninomiya, I.
Heterocycles 1984, 22, 237; (c) Jones, K.; Thompson, M.; Wright, C. J. Chem. Soc., Chem. Commun. 1986, 115; (d)
Canoira, L.; Rodriguez, J. G. J. Heterocyclic Chem. 1985, 22, 1511.
5. (a) Shiohara, K.; Habave, S.; Okamoto, Y. Polym. J. 1998, 30, 249; (b) Zurakowska-Orszagh, J. J. Polym. Sci.
(C) 1968, 16, 3291; (c) Patai, S.; Bentov, M.; Reichmann, M. E. J. Am. Chem. Soc. 1952, 74, 845; (d)
Zurakowska-Orszagh, J. Polymer 1978, 19, 720.
6. (a) Mori, K.; Mizoroki, T.; Ozaki, A. Chem. Lett. 1975, 1673; (b) Hiyama, T.; Wakasa, N.; Ueda, T.; Kusumoto,
T. Bull. Chem. Soc. Jpn. 1990, 63, 640.
7. Torii, S.; Okumoto, H.; Sadakana, M.; Xu, L. H. Chem Lett. 1991, 1673.
8. Imada, Y.; Alper, H. J. Org. Chem. 1996, 61, 6766.
9. Imada, Y.; Vasopollo, G.; Alper, H. J. Org. Chem. 1996, 61, 7982.
10. (a) Zargarian, D.; Alper, H. Organometallics 1993, 12, 712; (b) Zarganian, D.; Alper, H. Organometallics 1991, 10,
294.
11. (a) El Ali, B.; Vasapollo, G.; Alper, H. J. Org. Chem. 1993, 58, 4739; (b) El Ali, B.; Alper, H. J. Mol. Catal. 1991,
67, 29; (c) El Ali, B.; Alper, H. J. Mol. Catal. 1995, 96, 197.
12. Ogata, Y.; Takagi, K.; Ishino, I. J. Org. Chem. 1971, 36, 3975.
13. Ninomiya, I.; Hashimoto, C.; Kiyuchi, T.; Naito, T. J. Chem. Soc., Perkin Trans. 1 1983, 2967.