V.D. Bhatt, K. Gohil / Thermochimica Acta 556 (2013) 23–29
29
[6] B. Zalba, J.M. Marin, L.F. Kabeza, H. Mehling, Review on thermal energy storage
with phase change: materials, heat transfer analysis and applications, Appl.
Therm. Eng. 23 (2003) 251–283.
[7] M. Xiao, B. Feng, K. Gong, Thermal performance of a high conductive shape-
stabilized thermal storage material, Sol. Energy Mater. Sol. Cells 169 (2001)
293–296.
[20] A.B. Pereiro, A. Rodriguez, Azeotrope-breaking using [BMIM] [MeSO4] ionic
liquid in an extraction column, Sep. Purif. Technol. 62 (2008) 733–738.
[21] M. Abai, J.D. Holbrey, R.D. Roggers, G. Srinivasan, Ionic liquid S-
alkylthiouronium salts, New J. Chem. 34 (2010) 1981–1993.
[22] P. Painter, P. Williams, A. Lupinsky, Recovery of bitumen from Utah tar sands
using ionic liquids, Energy Fuels 24 (2010) 5081–5088.
[8] S.O. Enibe, Performance of a natural circulation air heating system with phase
change material energy storage, Renew. Energy 27 (2002) 69–86.
[9] O.S. Lieberg, High Temperature Water Systems, The Industrial Press, New York,
USA, 1958.
[10] B. Wu, R.G. Reddy, R.D. Rogers, Novel ionic liquid thermal storage for solar
thermal electric power systems, in: Proceeding Thermal Forum, Washington,
DC, 2001, pp. 445–451.
[11] M. Kenisarin, K. Mahkamov, Solar energy storage using phase change materials,
Renew. Sustain. Energy Rev. 11 (2007) 1913–1965.
[12] N. Sarier, E. Onder, S. Ozay, Y. Ozkiillic, Preparation of phase change materials –
montmorillonite composites suitable for thermal energy storage, Thermochim.
Acta 524 (2011) 39–46.
[13] G.A. Lane, Solar Heat Storage: Latent Heat Material, vol. II. Technology, CRC
Press, Florida, 1986.
[14] I. Dincer, M.A. Rosen, Thermal Energy Storage, Systems and Applications, John
Wiley & Sons, Chichester, England, 2002.
[15] S. Keskin, D. Kayrak-Talay, A. Ugur, H. Oner, A review of ionic liquids towards
supercritical fluid applications, J. Supercrit. Fluids 43 (2007) 150–180.
[16] X.X. Lin, Y. Xu, Facile synthesis and electrochemical capacitance of composites
of polypyrrole/multi-walled carbon nanotubes, Electrochim. Acta 53 (2008)
4990–4997.
[23] A. Samadi, R.K. Kemmerlin, S.M. Husson, Polymerized ionic liquid sorbents for
CO2 separation, Energy Fuels 24 (2010) 5797–5804.
[24] L. Fan, S. Kang, J. Wu, S. Hao, Z. Lan, J. Lin, Quasi-solid state dye-sensitized solar
cells based on polyvinylpyrrolidone with ionic liquid, J. Energy Sources A 32
(2010) 1559–1568.
[25] M.E.V. Valkenburg, R.L. Vaughn, M. Williams, J.S. Wilkes, Thermochemistry of
ionic liquid heat-transfer fluids, Thermochim. Acta 425 (2005) 181–188.
[26] R.L. Gardas, J.A.P. Coutinho, Group contribution methods for the prediction of
thermophysical and transport properties of ionic liquids, AIChE J. 55 (2009)
1274–1290.
[27] L. Bai, X. Li, J. Zhu, B. Chen, Effects of nucleators on the thermodynamic prop-
erties of seasonal energy storage materials based on ionic liquids, Energy Fuels
25 (2011) 1811–1816.
[28] J. Golding, S. Forsyth, D.R. MacFarlane, M. Forsyth, G.B. Deacon, Methanesul-
fonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and
quaternary ammonium cations: novel low cost ionic liquids, Green Chem. 4
(2002) 223–229.
[29] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Com-
pounds, Theory and Applications in Inorganic Chemistry, 6th ed., John Wiley &
Sons, New York, 2008.
[30] D.Q. Xiu, B.Y. Liu, Z.Y. Xu, Synthesis of 2-arylimidazo[1,2-a]pyrimidines in ionic
liquids, Chin. Chem. Lett. 14 (2003) 1002–1004.
[31] U. Domanska, Physico-chemical properties and phase behaviour
of pyrrolidinium-based ionic liquids, Int. J. Mol. Sci. 11 (2010)
1825–1841.
[17] C.F. Poole, S.K. Poole, Extraction of organic compounds with room temperature
ionic liquids, J. Chromatogr. A 1217 (2010) 2268–2286.
[18] E.J. Gonzalez, N. Calyar, E. Gomez, A. Dominguez, Separation of benzene
from linear alkanes (C6–C9) using 1-ethyl-3-methylimidazolium ethylsulfate
at T = 298.15 K, J. Chem. Eng. Data 55 (2010) 3422–3427.
[19] X. Sun, B. Peng, Y. Ji, J. Chen, D. Li, The solid–liquid extraction of yttrium from
rare earths by solvent (ionic liquid) impregnated resin coupled with complex-
ing method, Sep. Purif. Technol. 63 (2008) 61–68.
[32] T. Ruther, J. Huang, A.F. Hollenkamp, A new family of ionic liquids based on N,N-
dialkyl-3-azabicyclo[3.2.2]nonanium cations: organic plastic crystal behaviour
and highly reversible lithium metal electrodeposition, Chem. Commun. 48
(2007) 5226–5228.