Paper
RSC Advances
converted into the corresponding carbonates with high selec- 12 J. Mindemark, L. Imholt, J. Montero and D. Brandell, J.
tivity (>99%) and good to excellent yields, indicating the high
versatility of the microreactor technology.
Polym. Sci., Part A: Polym. Chem., 2016, 54, 2128–2135.
´
13 C. Martın, G. Fiorani and A. W. Kleij, ACS Catal., 2015, 5,
1353–1370.
14 B. Schaeffner, F. Schaeffner, S. P. Verevkin and A. Boerner,
Chem. Rev., 2010, 110, 4554–4581.
Conclusions
In summary, the conversion of CO2 to various cyclic carbonates 15 M. Aresta, A. Dibenedetto and A. Angelini, Chem. Rev., 2014,
proceeds effectively in a microreactor using a binary Al complex/ 114, 1709–1742.
quaternary ammonium salt catalyst system. All the tested 16 W. Guo, J. E. Gomez, A. Cristofol, J. Xie and A. W. Kleij,
epoxides can be transformed to the corresponding cyclic
Angew. Chem., Int. Ed., 2018, 57, 13735–13747.
carbonates with >95% yield under the residence time of less 17 A. Kaithal, M. Holscher and W. Leitner, Angew. Chem., Int.
than 100 s due to the intensication of “electrophile–nucleo- Ed., 2018, 57, 13449–13453.
phile” synergistic effect for epoxides ring-opening. It is clear 18 B. R. James, J. A. Boissonnault, A. G. Wong-Foy, A. J. Matzger
that the microreactor technology presented here might be and M. S. Sanford, RSC Adv., 2018, 8, 2132–2137.
ideally suited for the industrial preparation of cyclic carbonates. 19 B. Yu and L. N. He, ChemSusChem, 2015, 8, 52–62.
20 J. Zhang, Q. Cai, J. Zhao and S. Zang, RSC Adv., 2018, 8, 4478–
4482.
Conflicts of interest
21 M. N. Timofeeva, A. E. Kapustin, V. N. Panchenko,
There are no conicts to declare.
E. O. Butenko, V. V. Krupskaya, A. Gil and M. A. Vicente, J.
Mol. Catal. A: Chem., 2016, 423, 22–30.
22 H. Chang, Q. Li, X. Cui, H. Wang, Z. Bu, C. Qiao and T. Lin, J.
CO2 Util., 2018, 24, 174–179.
Acknowledgements
Gratitude is expressed to the Fundamental Research Funds for 23 Z. Yang, J. Sun, X. Liu, Q. Su, Y. Liu, Q. Li and S. Zhang,
the Central Universities (DUT18ZD105).
Tetrahedron Lett., 2014, 55, 3239–3243.
24 L. Ji, Z. Luo, Y. Zhang, R. Wang, Y. Ji, F. Xia and G. Gao, Mol.
Catal., 2018, 446, 124–130.
25 M. Ahmed and A. Sakthivel, J. CO2 Util., 2017, 22, 392–399.
Notes and references
1 A. W. Kleij, M. North and A. Urakawa, ChemSusChem, 2017, 26 C. Yang, M. Liu, J. Zhang, X. Wang, Y. Jiang and J. Sun, Mol.
10, 1036–1038. Catal., 2018, 450, 39–45.
2 A. Farran, C. Cai, M. Sandoval, Y. Xu, J. Liu, M. J. Hernaiz and 27 Y. Ma, C. Chen, T. Wang, J. Zhang, J. Wu, X. Liu, T. Ren,
R. J. Linhardt, Chem. Rev., 2015, 115, 6811–6853. L. Wang and J. Zhang, Appl. Catal., A, 2017, 547, 265–273.
3 J. Artz, T. E. Muller, K. Thenert, J. Kleinekorte, R. Meys, 28 D.-H. Lan, N. Fan, Y. Wang, X. Gao, P. Zhang, L. Chen,
A. Sternberg, A. Bardow and W. Leitner, Chem. Rev., 2018,
118, 434–504.
4 J. A. Martens, A. Bogaerts, N. De Kimpe, P. A. Jacobs,
C.-T. Au and S.-F. Yin, Chin. J. Catal., 2016, 37, 826–845.
29 J. Peng, H.-J. Yang, Y. Geng, Z. Wei, L. Wang and C.-Y. Guo, J.
CO2 Util., 2017, 17, 243–255.
G. B. Marin, K. Rabaey, M. Saeys and S. Verhelst, 30 H. Buttner, L. Longwitz, J. Steinbauer, C. Wulf and
ChemSusChem, 2017, 10, 1039–1055. T. Werner, Top. Curr. Chem., 2017, 375, 50.
5 M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, 31 X. B. Lu and D. J. Darensbourg, Chem. Soc. Rev., 2012, 41,
S. Brown, P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, 1462–1484.
J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, 32 C. Miceli, J. Rintjema, E. Martin, E. C. Escudero-Adan,
´
G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit,
G. Puxty, J. Reimer, D. M. Reiner, E. S. Rubin, S. A. Scott,
C. Zonta, G. Licini and A. W. Kleij, ACS Catal., 2017, 7,
2367–2373.
N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox and 33 J. A. Castro-Osma, K. J. Lamb and M. North, ACS Catal., 2016,
N. Mac Dowell, Energy Environ. Sci., 2018, 11, 1062–1176.
6, 5012–5025.
6 Q. Liu, L. Wu, R. Jackstell and M. Beller, Nat. Commun., 2015, 34 C. Maeda, T. Taniguchi, K. Ogawa and T. Ema, Angew. Chem.,
6, 5933. Int. Ed., 2015, 54, 134–138.
7 C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, 35 D. Tian, B. Liu, Q. Gan, H. Li and D. J. Darensbourg, ACS
K. E. Cordova and O. M. Yaghi, Nat. Rev. Mater., 2017, 2,
17045.
8 J. Liang, Y. Q. Xie, X. S. Wang, Q. Wang, T. T. Liu, Y. B. Huang
and R. Cao, Chem. Commun., 2018, 54, 342–345.
Catal., 2012, 2, 2029–2035.
36 L. Wang, C. Xu, Q. Han, X. Tang, P. Zhou, R. Zhang, G. Gao,
B. Xu, W. Qin and W. Liu, Chem. Commun., 2018, 54, 2212–
2215.
9 R. R. Shaikh, S. Pornpraprom and V. D'Elia, ACS Catal., 2017, 37 R. Ma, L.-N. He and Y.-B. Zhou, Green Chem., 2016, 18, 226–
8, 419–450. 231.
10 Q.-W. Song, Z.-H. Zhou and L.-N. He, Green Chem., 2017, 19, 38 T. Ema, Y. Miyazaki, S. Koyama, Y. Yano and T. Sakai, Chem.
3707–3728.
Commun., 2012, 48, 4489–4491.
11 Y. Wang, J. Zhao, J. Qu, F. Wei, W. Song, Y. G. Guo and B. Xu,
ACS Appl. Mater. Interfaces, 2016, 8, 26008–26012.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 39182–39186 | 39185