10.1002/anie.202013353
Angewandte Chemie International Edition
COMMUNICATION
[2]
[3]
a) R. D. Kennedy, D. Lloyd, H. McNab, J. Chem. Soc., Perkin Trans. 1,
2002, 1601–1621; b) M. J. Marsella, Acc. Chem. Res. 2002, 35, 944–
951; c) E. L. Spitler, C. A. Johnson II, M. M. Haley, Chem. Rev. 2006,
106, 5344–5386; d) C. D. Stevenson, Acc. Chem. Res. 2007, 40, 703–
711; e) E. Vogel, Angew. Chem. Int. Ed. 2011, 50, 4278–4287; f) T.
Nishiuchi, M. Iyoda, Chem. Rec. 2015, 15, 329–346.
parent 1. The concentration of 1, however, will be very low under
the reducing reaction conditions (excess of Li metal), which “shifts”
the equilibrium towards the tetraanion. The tetraanion (and
dianion) enjoy significant stabilization through the coordinating Li+
cations and the solvent: both the dianion 12 and the tetraanion
1
4 cannot exist in vacuum as indicated by the calculated positive
a) R. Willstätter, E. Waser, Ber. Dtsch. Chem. Ges. 1911, 44, 3423–3445;
b) R. Willstätter, M. Heidelberger, Ber. Dtsch. Chem. Ges. 1913, 46, 517–
527.
orbital energies of these species in vacuum (i.e, not all electrons
are bound, Table S7).
Regarding the electronic properties of 1 and [Li+ (14–)]2, it is
[4]
[5]
a) H. S. Kaufman, I. Fankuchen, H. Mark, J. Chem. Phys. 1947, 6, 414–
415; b) H. S. Kaufman, I. Fankuchen, H. Mark, Nature. 1948, 161, 165.
a) T. J. Katz, J. Am. Chem. Soc. 1960, 82, 3784–3785; b) T. J. Katz, J.
Am. Chem. Soc. 1960, 82, 3785–3786.
2
informative to consider the nuclear independent chemical shifts
(NICS) near the COT core.[27] We find clearly positive NICS values
near the geometric center of the COT core of 1 indicating anti-
[6]
[7]
T. J. Katz, H. L. Strauss, J. Chem. Phys. 1960, 6, 1873–1875.
S. Z. Goldberg, K. N. Raymond, C. A. Harmon, D. H. Templeton, J. Am.
Chem. Soc. 1974, 96, 1348–1351.
aromatic behavior (Figure S20). In case of [Li+ (14–)]2, the NICS
2
values near the COT core are of small magnitude (Figure S21)
which points to a non-aromatic character. Furthermore, natural
population analysis reveals that the negative charge of 14– is
[8]
K. Müllen, W. Huber, T. Meul, M. Nakagawa, M. Iyoda, J. Am. Chem.
Soc. 1982, 104, 5403–5411.
delocalized over the [Li+ (14–)]2 scaffold with only a small fraction
[9]
S. Kuwajima, Z. G. Soos, J. Am. Chem. Soc. 1987, 109, 107–113.
2
[10] M. Monajjemi, J. Struct. Chem. 2019, 9, 1361–1374.
[11] a) D. T. Chase, A. G. Fix, B. D. Rose, C. D. Weber, S. Nobusue, C. E.
Stockwell, L. N. Zakharov, M. C. Lonergan, M. M. Haley, Angew. Chem.
Int. Ed. 2011, 50, 11103–11106; b) S. R. Bheemireddy, P. C. Ubaldo, P.
W. Rose, A. D. Finke, J. Zhuang, L. Wang, K. N. Plunkett, Angew. Chem.
Int. Ed. 2015, 54, 15762–15766; c) J. D. Wood, J. L. Jellison, A. D. Finke,
L. Wang, K. N. Plunkett, J. Am. Chem. Soc. 2012, 134, 15783–15789.
[12] V. M. Tsefrikas, L. T. Scott, Chem. Rev. 2006, 106, 4868–4884.
[13] a) A. V. Zabula, A. S. Filatov, S. N. Spisak, A. Yu. Rogachev, M. A.
Petrukhina, Science 2011, 333, 1008-1011; b) A. V. Zabula, S. N. Spisak,
A. S. Filatov, M. A. Petrukhina, Angew. Chem. Int. Ed. 2012, 51, 12194-
12198; c) A. S. Filatov, A. V. Zabula, S. N. Spisak, A. Yu. Rogachev, M.
A. Petrukhina, Angew. Chem. Int. Ed. 2014, 53, 140-145; d) A. V. Zabula,
S. N. Spisak, A. S. Filatov, A. Yu. Rogachev, R. Clérac, M. A. Petrukhina,
Chem. Sci. 2016, 7, 1954-1961; e) A. V. Zabula, S. N. Spisak, A. S.
Filatov, A. Yu. Rogachev, M. A. Petrukhina, Acc. Chem. Res. 2018, 51,
1541-1549.
located at the COT core (–0.55 e) (Figures S22, S23).
In this work, the chemical reduction of OPTBCOT (1) with
lithium metal has been investigated for the first time. In contrast
to parent COT, four electrons are readily accepted by the π-
expanded and contorted polycyclic framework of 1. The resulting
tetraanion, 14–, has been crystallized with four lithium counterions
and was found to exhibit a highly nonplanar conformation, as
revealed by X-ray crystallography. This conformation is stabilized
by coordination of two internally bound lithium cations, while two
external cations remain solvent-separated from the [Li+ (14–)]2
2
core. Notably, the low-temperature 7Li NMR data in solution
revealed characteristic signal shifts for three types of lithium ions
observed in the crystal structure. Interestingly, the expected
dianionic aromatic species with the planarized COT moiety has
not been formed, under the experimental conditions used. The
rationalization of this unexpected finding is provided by density
functional theory calculations, suggesting that the formation of the
tetraanion may be favoured under the experimental reaction
conditions.
[14] a) J. D. Wood, J. L. Jellison, A. D. Finke, L. Wang, K. N. Plunkett, J. Am.
Chem. Soc. 2012, 134, 15783–15789; b) S. R. Bheemireddy, M. P.
Hautzinger, T. Li, B. Lee, K. N. Plunkett, J. Am. Chem. Soc. 2017, 139,
5801–5807; c) A. M. Zeidell, L. Jennings, C. K. Fredrickson, Q. Ai, J. J.
Dressler, L. N. Zakharov, C. Risko, M. M. Haley, O. D. Jurchescu, Chem.
Mater. 2019, 31, 6962–6970.
[15] H. Kojima, A. J. Bard, H. N. C. Wong, F. Sondheimer, J. Am. Chem. Soc.
1976, 98, 5560–5565.
Acknowledgments
[16] I. Hisaki, M. Sonoda, Y. Tobe, Eur. J. Org. Chem. 2006, 833–847.
[17] a) C.-K. Hau, S. S.-Y. Chui, W. Lu, C.-M. Che, P.-S. Cheng, T. C. W.
Mak, Q. Miao, H. N. C. Wong, Chem. Sci. 2011, 6, 1068–1075; b) P. A.
Wender, A. B. Lesser, L. E. Sirois, Angew. Chem. Int. Ed. 2012, 11,
2736–2740; c) T. Nishinaga, T. Ohmae, K. Aita, M. Takase, M. Iyoda, T.
Arai, Y. Kunugi, Chem. Commun. 2013, 47, 5354–5356.
Financial and instrumentational support of this work from the
National Science Foundation (CHE-2003411 and MRI-1726724)
is acknowledged (M. A. P.). NSF's ChemMatCARS Sector 15 is
principally supported by the Divisions of Chemistry (CHE) and
Materials Research (DMR), National Science Foundation, under
grant number NSF/CHE-1834750. The use of the Advanced
Photon Source, an Office of Science User Facility operated for the
U.S. Department of Energy (DOE) Office of Science by Argonne
National Laboratory, was supported by the U.S. DOE under
Contract No. DE-AC02-06CH11357. The generous funding by the
Deutsche Forschungsgemeinschaft (DFG) – Project number
182849149 – SFB 953 and project number 401247651 – KI
1662/3-1 is acknowledged (M. K.).
[18] M. Müller, V. S. Iyer, C. Kübel, V. Enkelmann, K. Müllen, Angew. Chem.
Int. Ed. 1997, 36, 1607–1610.
[19] A. Rajca, A. Safronov, S. Rajca, R. Shoemaker, Angew. Chem. Int. Ed.
1997, 36, 488–491.
[20] A. L. Mackay, H. Terrones, Nature 1991, 352, 762.
[21] H. Chen, Q. Miao. ChemPlusChem 2019, 6, 627–629.
[22] T. Kirschbaum, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2020,
59, 270–274.
[23] M. Müller, V. S. Iyer, C. Kübel, V. Enkelmann, K. Müllen, Angew. Chem.
In. Ed Engl. 1997, 36, 1607-1610.
[24] CCDC 2034668 (1-THF), 2034669 (1-NS), and 2034670 (2) contain the
supplementary crystallographic data. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
[25] N. J. Sumner, S. N. Spisak, A. S. Filatov, A. Yu. Rogachev, A. V. Zabula,
M. A. Petrukhina, Organometallics 2014, 33, 2874-2878.
Keywords: electron acceptors • cyclooctatetraene • chemical
reduction
diffraction
• density functional-theory calculations • X-ray
[26] A. S. Filatov, S. N. Spisak, A. V. Zabula, J. McNeely, A. Yu. Rogachev,
M. A. Petrukhina, Chem. Sci. 2015, 6, 1959-1966.
[1]
a) F. Sondheimer, Acc. Chem. Res. 1972, 5, 81–91; b) N. Z. Huang, F.
Sondheimer, Acc. Chem. Res. 1982, 15, 96–102.
[27] P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema
Hommes, J. Am. Chem. Soc. 1996, 118, 6317-6318.
4
This article is protected by copyright. All rights reserved.