Communication
ChemComm
of PCMC, further enhancing the through-space p-delocalization 13 D. Lu, H. Wu, Y. Dai, H. Shi, X. Shao, S. Yang, J. Yang and P. W. Du,
4
8
Chem. Commun., 2016, 52, 7164–7167.
4 D. P. Lu, G. L. Zhuang, H. T. Wu, S. Wang, S. F. Yang and P. W. Du,
Angew. Chem., Int. Ed., 2017, 56, 158–162.
15 J. Kr ¨o mer, I. Rios-Carreras, G. Fuhrmann, C. Musch, M. Wunderlin,
T. Debaerdemaeker, E. Mena-Osteritz and P. B ¨a uerle, Angew. Chem.,
Int. Ed., 2000, 39, 3481–3486.
6 A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo,
Chem. Rev., 2010, 110, 3–24.
effect. As a result, the low temperature can reduce the flexibility
1
of the macrocycle and facilitate the through-space p-delocalization,
resulting in enhanced absorption and emission intensities.
In order to further reveal the molecular geometry and
electronic nature of these two macrocycles, we performed
density functional theory calculations at the theoretical level
49
1
5
0
17 Z. He, X. Xu, X. Zheng, T. Ming and Q. Miao, Chem. Sci., 2013, 4,
525–4531.
of B3LYP/Def2-TZVP using the Gaussian 09 software. The
4
ꢀ1
strain energy is calculated to be 46.22 kcal mol for DCMC
and the HOMO–LUMO gap is 3.42 eV for PCMC and 3.31 eV for
DCMC. All the results can be found in Fig. S18–S22 (ESI†).
In conclusion, we have successfully synthesized a through-
1
1
2
8 T. Kawase, K. Tanaka, Y. Seirai, N. Shiono and M. Oda, Angew.
Chem., Int. Ed., 2003, 42, 5597–5600.
9 H. C. Lin, W. Y. Lin, H. T. Bai, J. H. Chen, B. Y. Jin and T. Y. Luh,
Angew. Chem., Int. Ed., 2007, 46, 897–900.
0 E. Elacqua and L. R. MacGillivray, Eur. J. Org. Chem., 2010, 6883–6894.
space p-delocalization conjugated macrocycle (PCMC) using 21 I. Majerz and T. Dziembowska, J. Phys. Chem. A, 2016, 120, 8138–8147.
2
2 E. Spuling, N. Sharma, I. D. W. Samuel, E. Zysman-Colman and
S. Brase, Chem. Commun., 2018, 54, 9278–9281.
palladium-catalyzed Suzuki–Miyaura coupling followed by the
reductive aromatization reaction. Compared to a diphenylmethane-
23 Y. Morisaki and Y. Chujo, Polym. Chem., 2011, 2, 1249–1257.
containing conjugated macrocycle (DCMC), PCMC showed notice- 24 M. Hasegawa, K. Kobayakawa, H. Matsuzawa, T. Nishinaga, T. Hirose,
K. Sako and Y. Mazaki, Chem. – Eur. J., 2017, 23, 3267–3271.
5 K. J. Weiland, T. Brandl, K. Atz, A. Prescimone, D. Haussinger,
T. Solomek and M. Mayor, J. Am. Chem. Soc., 2019, 141, 2104–2110.
able redshifts in both absorption and emission spectra owing
to its p-stacked structure with through-space interaction. In
2
addition, the solvent effect of PCMC confirms the solvato- 26 C.-Y. Yu and Y.-C. Lai, RSC Adv., 2018, 8, 19341–19347.
2
7 A. J. Boydston, L. Bondarenko, I. Dix, T. J. R. Weakley, H. Hopf and
M. M. Haley, Angew. Chem., Int. Ed., 2001, 40, 2986–2989.
8 J. L. Zafra, A. M. Ontoria, P. M. Burrezo, M. Pena-Alvarez, M. Samoc,
J. Szeremeta, F. J. Ramirez, M. D. Lovander, C. J. Droske, T. M.
Pappenfus, L. Echegoyen, J. T. L. Navarrete, N. Martin and J. Casado,
J. Am. Chem. Soc., 2017, 139, 3095–3105.
chromism of the through-space charge transfer in the cyclic
conjugated system. Furthermore, challenges in terms of synthe-
sizing large p-extended through-space conjugated macrocycles
and developing their practical optoelectronic applications are
the subjects of ongoing work in our laboratory.
This work was financially supported by the National Key
Research and Development Program of China (2017YFA0402800),
the National Natural Science Foundation of China (21971229 and
2
2
3
3
9 T. Ogoshi, K. Umeda, T. A. Yamagishi and Y. Nakamoto, Chem.
Commun., 2009, 4874–4876.
0 K. J. Weiland, N. Munch, W. Gschwind, D. Haussinger and
M. Mayor, Helv. Chim. Acta, 2019, 102(1), e1800205.
1 P. Li, T. J. Sisto, E. R. Darzi and R. Jasti, Org. Lett., 2014, 16, 182–185.
5
1772285), the National Synchrotron Radiation Laboratory at 32 Y. Segawa, A. Fukazawa, S. Matsuura, H. Omachi, S. Yamaguchi,
S. Irle and K. Itami, Org. Biomol. Chem., 2012, 10, 5979–5984.
USTC, and the Zhejiang Provincial Natural Science Foundation
No. LR19B010001).
3
3 Q. Huang, G. Zhuang, H. Jia, M. Qian, S. Cui, S. Yang and P. W. Du,
Angew. Chem., Int. Ed., 2019, 58, 6244–6249.
(
3
3
3
4 Y. Morisaki and Y. Chujo, Macromolecules, 2003, 36, 9319–9324.
5 Y. Morisaki and Y. Chujo, Angew. Chem., Int. Ed., 2006, 45, 6430–6437.
6 J. W. Hong, H. Y. Woo, B. Liu and G. C. Bazan, J. Am. Chem. Soc.,
Conflicts of interest
2005, 127, 7435–7443.
3
3
3
7 J. Zyss, I. Ledoux, S. Volkov, V. Chernyak, S. Mukamel, G. P.
Bartholomew and G. C. Bazan, J. Am. Chem. Soc., 2000, 122, 11956–11962.
8 H. Y. Woo, D. Korystov, Y. Jin and H. Suh, Bull. Korean Chem. Soc.,
2007, 28, 2253–2260.
9 T. Miyazaki, M. Shibahara, J. Fujishige, M. Watanabe, K. Goto and
T. Shinmyozu, J. Org. Chem., 2014, 79, 11440–11453.
There are no conflicts to declare.
Notes and references
1
2
C. Grave and A. D. Schl u¨ ter, Eur. J. Org. Chem., 2002, 3075–3098.
J. Casado, V. Hern ´a ndez, R. Ponce Ortiz, M. C. Ruiz Delgado, J. T. 40 G. P. Bartholomew and G. C. Bazan, J. Am. Chem. Soc., 2002, 124,
L ´o pez Navarrete, G. Fuhrmann and P. B ¨a uerle, J. Raman Spectrosc.,
004, 35, 592–599.
W. Zhang and J. S. Moore, Angew. Chem., Int. Ed., 2006, 45, 4416–4439.
5183–5196.
2
41 F. Zhang, R. Zhang, X. Liang, K. Guo, Z. Han, X. Lu, J. Xie, J. Li, D. Li
and X. Tian, Dyes Pigm., 2018, 155, 225–232.
3
4
Z. Liu, S. K. M. Nalluri and J. F. Stoddart, Chem. Soc. Rev., 2017, 46, 42 P. C. Shen, Z. Y. Zhuang, X. F. Jiang, J. S. Li, S. N. Yao, Z. J. Zhao and
2
459–2478.
B. Tang, J. Phys. Chem. Lett., 2019, 10, 2648–2656.
5
6
7
8
9
F. Sondheimer, Pure Appl. Chem., 1963, 7, 363–388.
43 C. Y. Yu, C. H. Sie and C. Y. Yang, New J. Chem., 2014, 38, 5003–5008.
44 L. Guyard, C. Dumas, F. Miomandre, R. Pansu, R. Renault-Meallet
and P. Audebert, New J. Chem., 2003, 27, 1000–1006.
T. Kawase and H. Kurata, Chem. Rev., 2006, 106, 5250–5273.
F. Zhang and P. B ¨a uerle, J. Am. Chem. Soc., 2007, 129, 3090–3091.
J. Sreedhar Reddy and V. G. Anand, Chem. Commun., 2008, 1326–1328.
R. Jasti, J. Bhattacharjee, J. B. Neaton and C. R. Bertozzi, J. Am. 46 G. Yang, X. W. Han, W. P. Zhang, X. M. Liu, P. Y. Yang, Y. G. Zhou
Chem. Soc., 2008, 130, 17646–17647. and X. H. Bao, J. Phys. Chem. B, 2005, 109, 18690–18698.
45 W. D. Luke and A. Streitwieser, J. Am. Chem. Soc., 1981, 103, 3241–3243.
1
0 B. Farajidizaji, C. Huang, H. Thakellapalli, S. Li, N. G. Akhmedov, 47 B. M. Beser, M. Arik and Y. Onganer, Luminescence, 2019, 34, 415–425.
B. V. Popp, J. L. Petersen and K. K. Wang, J. Org. Chem., 2017, 82, 48 B. Valeur, Digital Encycl. Appl. Phys., 2003, 477–531.
4
458–4464.
49 T. Ogoshi, R. Shiga, M. Hashizume and T. Yamagishi, Chem.
Commun., 2011, 47, 6927–6929.
50 M. J. Frisch, G. W. Trucks, H. B. Schlegel and G. E. Scuseria, et al.,
Gaussian 09 Software Revision A.02, Gaussian Inc., Wallingford,
2009.
1
1 F. Lucas, L. Sicard, O. Jeannin, J. Rault-Berthelot, E. Jacques,
C. Quinton and C. Poriel, Chem. – Eur. J., 2019, 25, 7740–7748.
2 D. Wassy, M. Pfeifer and B. Esser, J. Org. Chem., 2019, DOI: 10.1021/
acs.joc.9b01195.
1
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019