Page 11 of 13
Journal of the American Chemical Society
Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 11853-11858. (c) Radi,
(22) Li, Y.; Sharma, S. K.; Karlin, K. D. Polyhedron 2013,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
R. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 4003-4008.
58, 190-196.
(9) As pointed out by one reviewer, there is some disagree-
ment among researchers as to whether peroxynitrite (PN) is
directly responsible for (a) damaging consequences to biomole-
cules or (b) disease states. Some in the community suggest that
the reaction of NO with superoxide detoxifies the latter since
formation of peroxynitrite will lead to its isomerization to in-
nocuous nitrate ion. However, chemical observations (e.g., (i)
superoxide itself is very unreactive and not damaging, (ii) it
reacts faster with nitric oxide than it undergoes the Haber-Weiss
reaction), biochemical findings, (e.g., (i) NO itself is not so
reactive toward biomolecules, (ii) PN diffuses over longer dis-
tances than superoxide or hydroxyl radical, and (iii) it has been
directly detected in activated macrophages), and logic in a
chemical perspective, very strongly implicate peroxynitrite in
the roles described here in this Introduction. See also relevant
references 5a, 5d, 10 and 33a.
(23) Garcia-Bosch, I.; Sharma, S. K.; Karlin, K. D. J. Am.
Chem. Soc. 2013, 135, 16248-16251.
(24) (a) Jones, W. R.; Jandik, P. J. Chromatogr. A 1992, 608,
385-393. (b) Melanson, J. E.; Lucy, C. A. J. Chromatogr. A
2000, 884, 311-316.
(25) In other experiments, we showed that nitrate binding to 6
is weak and does not occur at RT, whereas addition of excess
nitrate ion, and lowering of the temperature leads to a low-spin
Im
III
complex, thus where nitrate ion is bound, in [(P )Fe (NO )]
4a, see the SI.
3
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(26) Spiro, T. G.; Strekas, T. C. J. Am. Chem. Soc. 1974, 96,
338-345.
(27) Westre, T. E.; Kennepohl, P.; DeWitt, J. G.; Hedman, B.;
Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 1997, 119,
6297-6314.
(28) Wilson, S. A.; Green, E.; Mathews, I. I.; Benfatto, M.;
Hodgson, K. O.; Hedman, B.; Sarangi, R. Proc. Natl. Acad. Sci.
U.S.A. 2013, 110, 16333-16338.
(29) (a) Walker, F. A. Coord. Chem. Rev. 1999, 185–186,
471-534. (b) Nakamura, M.; Ikeue, T.; Neya, S.; Funasaki, N.;
Nakamura, N., Inorg. Chem. 1996, 35, 3731-3732. (c) Walker,
F. A. In NMR and EPR spectroscopy of paramagnetic metal-
loporphyrins and heme proteins, World Scientific Publishing
Co. Pte. Ltd. Singapore: 2010; pp 1-337.
(
10) (a) Ross, A. B.; Bielski, B. H. J.; Buxton, G. V.; Cabelli,
D. E.; Greenstock, C. L.; Helman, W. P.; Huie, R. E.; Grodkow-
ski, J.; Neta P. NDRL-NIST Solution Kinetics Database: Ver. 2,
Gaithersburg, Maryland: National Institute of Standards and
Technology, 1994. (b) Koppenol, W. H., CHAPTER 1 Peroxy-
nitrite: The Basics. In Peroxynitrite Detection in Biological
Media: Challenges and Advances, The Royal Society of Chem-
istry: Cambridge, UK, 2016, 1-11. (c) Prolo, C.; Álvarez, M. N.;
Radi, R. BioFactors 2014, 40, 215-225.
(30) Nitrato complex 4 can exist in two forms, with nitrate
bound in a six-coordinated complex, or in a form where nitrate
is outside of the coodination sphere; what forms depends on
temperature and/or if excess nitrate anion is present. Details of
these aspects are given in the SI; the key observation is that both
forms are distinguishable from peroxynitrite complex 3.
(31) Sharma, S. K.; Kim, H.; Rogler, P. J.; A. Siegler, M.;
Karlin, K. D. J. Biol. Inorg. Chem. 2016, 21, 729-743.
(32) (a) Yokoyama, A.; Han, J. E.; Cho, J.; Kubo, M.; Ogura,
T.; Siegler, M. A.; Karlin, K. D.; Nam, W. J. Am. Chem. Soc.
2012, 134, 15269-15272. (b) Yokoyama, A.; Cho, K.-B.; Karlin,
K. D.; Nam, W., J. Am. Chem. Soc. 2013, 135, 14900-14903. (c)
Kumar, P.; Lee, Y.-M.; Park, Y. J.; Siegler, M. A.; Karlin, K.
D.; Nam, W. J. Am. Chem. Soc. 2015, 137, 4284-4287. (d) Tran,
N. G.; Kalyvas, H.; Skodje, K. M.; Hayashi, T.; Moënne-
Loccoz, P.; Callan, P. E.; Shearer, J.; Kirschenbaum, L. J.; Kim,
E. J. Am. Chem. Soc. 2011, 133, 1184-1187. (e) Skodje, K. M.;
Williard, P. G.; Kim, E. Dalton Trans. 2012, 41, 7849-7851. (f)
Kalita, A.; Kumar, P.; Mondal, B., Chem. Commun. 2012, 48,
4636-4638. (g) Kalita, A.; Deka, R. C.; Mondal, B. Inorg.
Chem. 2013, 52, 10897-10903.
(33) (a) Ischiropoulos, H.; Zhu, L.; Chen, J.; Tsai, M.; Martin,
J. C.; Smith, C. D.; Beckman, J. S. Arch. Biochem. Biophys.
1992, 298, 431-437. (b) Beckman, J. S.; Ischiropoulos, H.; Zhu,
L.; Van der Woerd, M.; Smith, C.; Chen, J.; Harrison, J.; Mar-
tin, J. C.; Tsai, M. Arch. Biochem. Biophys. 1992, 298, 438-445.
(c) Gunaydin, H.; Houk, K. N. Chem. Res. Toxicol. 2009, 22,
894-898. (d) Beckman, J. S. Chem. Res. Toxicol. 1996, 9, 836-
844. (e) O'Donnell, V. B.; Eiserich, J. P.; Chumley, P. H.; Ja-
blonsky, M. J.; Krishna, N. R.; Kirk, M.; Barnes, S.; Darley-
Usmar, V. M.; Freeman, B. A. Chem. Res. Toxicol. 1999, 12,
83-92. (f) Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.;
Aston, P. R.; Patel, B.; Krasnoff, S. B.; Crane, B. R.; Gibson, D.
M.; Loria, R.; Challis, G. L. Nat. Chem. Biol. 2012, 8, 814-816.
(34) Note: addition of phenol to the superoxo complex result-
ed in no change in UV-vis/EPR/rRaman spectroscopies, in
(
11) Nagy, P. I. J. Phys. Chem. 2002, 106, 2659-2670.
(12) Tsai, H.-H.; Hamilton, T. P.; Tsai, J.-H. M.; van der
Woerd, M.; Harrison, J. G.; Jablonsky, M. J.; Beckman, J. S.;
Koppenol, W. H. J. Phys. Chem. 1996, 100, 15087-15095.
(
13) (a) Attia, A. A.; Silaghi-Dumitrescu, R. Int. J. Quantum
Chem. 2014, 114, 652-665. (b) Silaghi-Dumitrescu, R. J. Mol.
Struc.: THEOCHEM 2005, 722, 233-237.
(
14) (a) Olson, J. S.; Foley, E. W.; Rogge, C.; Tsai, A. L.;
Doyle, M. P.; Lemon, D. D. Free Radical Biol. Med. 2004, 36,
85-697. (b) Gardner, P. R.; Gardner, A. M.; Brashear, W. T.;
6
Suzuki, T.; Hvitved, A. N.; Setchell, K. D.; Olson, J. S. J. Inorg.
Biochem. 2006, 100, 542-550. (c) Gardner, P. R.; Gardner, A.
M.; Martin, L. A.; Salzman, A. L. Proc. Natl. Acad. Sci. U.S.A.
1
998, 95, 10378-10383. (d) Ouellet, H.; Ouellet, Y.; Richard,
C.; Labarre, M.; Wittenberg, B.; Wittenberg, J.; Guertin, M.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5902-5907.
(
15) (a) Herold, S.; Matsui, T.; Watanabe, Y. J. Am. Chem.
Soc. 2001, 123, 4085-4086. (b) Herold, S.; Exner, M.; Nauser,
T. Biochemistry 2001, 40, 3385-3395. (c) Herold, S. FEBS Lett.
1999, 443, 81-84. (d) Herold, S. FEBS Lett. 1998, 439, 85-88.
(16) Goldstein, S.; Merenyi, G.; Samuni, A. J. Am. Chem.
Soc. 2004, 126, 15694-15701.
(
17) Yukl, E. T.; de Vries, S.; Moenne-Loccoz, P. J. Am.
Chem. Soc. 2009, 131, 7234-7235.
18) Kurtikyan, T. S.; Ford, P. C. Chem. Commun. 2010, 46,
570-8572.
19) (a) Kurtikyan, T. S.; Eksuzyan, S. R.; Hayrapetyan, V.
(
8
(
A.; Martirosyan, G. G.; Hovhannisyan, G. S.; Goodwin, J. A. J.
Am. Chem. Soc. 2012, 134, 13861-13870. (b) Kurtikyan, T. S.;
Eksuzyan, S. R.; Goodwin, J. A.; Hovhannisyan, G. S. Inorg.
Chem. 2013, 52, 12046-12056.
(
20) Schopfer, M. P.; Mondal, B.; Lee, D.-H.; Sarjeant, A. A.
N.; Karlin, K. D. J. Am. Chem. Soc. 2009, 131, 11304-11305.
21. Sharma, S. K.; Rogler, P. J.; Karlin, K. D. J. Porphyrins
Phthalocyanines 2015, 19, 352-360.
(
ACS Paragon Plus Environment