Page 5 of 6
Journal of the American Chemical Society
Insight into Catalytic Mechanism. Proc. Natl. Acad. Sci. U. S. A.
2005, 102, 12041–12046.
(6) Ghosh, S.; Dey, A.; Sun, Y.; Scholes, C. P.; Solomon, E. I.
Spectroscopic and Computational Studies of Nitrite Reductase:
Proton Induced Electron Transfer and Backbonding Contributions
to Reactivity. J. Am. Chem. Soc. 2009, 131, 277–288.
(18) Complex 1b is a structurally characterized nitrito ZnII cryptate
analogous to 1a. See supporting information, Figure S5, Table S1
for the molecular structure of 1b.
(19)(a) Nam, W. High-Valent Iron(IV)-Oxo Complexes of Heme and
Non-Heme Ligands in Oxygenation Reactions. Acc. Chem. Res.
2007, 40, 522–531. (b) Lansky, D. E.; Goldberg, D. P. Hydrogen
1
2
3
4
5
6
7
8
9
(7) Zhao, Y.; Lukoyanov, D. A.; Toropov, Y. V.; Wu, K.; Shapleigh,
J. P.; Scholes, C. P. Catalytic Function and Local Proton Structure
at the Type 2 Copper of Nitrite Reductase: The Correlation of
Enzymatic pH Dependence, Conserved Residues, and Proton
Hyperfine Structure. Biochemistry 2002, 41, 7464–7474.
(8) Suzuki, S.; Kataoka, K.; Yamaguchi, K. Metal Coordination and
Mechanism of Multicopper Nitrite Reductase. Acc. Chem. Res.
2000, 33, 728–735.
(9) Fukuda, Y.; Tse, K. M.; Nakane, T.; Nakatsu, T.; Suzuki, M.;
Sugahara, M.; Inoue, S.; Masuda, T.; Yumoto, F.; Matsugaki, N.;
Nangoe, E.; Tono, K.; Joti, Y.; Kameshima, T.; Song,C.; Hatsui,
T.; Yabashi, M.; Nureki, O.; Murphy, M. E. P.; Inoue, T.; , Iwata,
S.; Mizohata, E. Redox-Coupled Proton Transfer Mechanism in
Nitrite Reductase Revealed by Femtosecond Crystallography.
Proc. Natl. Acad. Sci. 2016, 113, 2928–2933.
(10)Chang, Y. L.; Lin, Y. F.; Chuang, W. J.; Kao, C. L.; Narwane,
M.; Chen, H. Y.; Chiang, M. Y.; Hsu, S. C. N. Structure and
Nitrite Reduction Reactivity Study of Bio-Inspired Copper(I)-
Nitro Complexes in Steric and Electronic Considerations of
Tridentate Nitrogen Ligands. Dalton Trans. 2018, 47, 5335–5341.
(11)Sakhaei, Z.; Kundu, S.; Donnelly, J. M.; Bertke, J. A.; Kim, W.
Y.; Warren, T. H. Nitric Oxide Release via Oxygen Atom
Transfer from Nitrite at Copper(II). Chem. Commun. 2017, 53,
549–552.
(12)(a) Chandra Maji, R.; Mishra, S.; Bhandari, A.; Singh, R.;
Olmstead, M. M.; Patra, A. K. A Copper(II) Nitrite That Exhibits
Change of Nitrite Binding Mode and Formation of Copper(II)
Nitrosyl Prior to Nitric Oxide Evolution. Inorg. Chem. 2018, 57,
1550–1561. (b) Kujime, M.; Izumi, C.; Tomura, M.; Hada, M.;
Fujii, H. Effect of a Tridentate Ligand on the Structure, Electronic
Structure, and Reactivity of the Copper(I) Nitrite Complex: Role
of the Conserved Three-Histidine Ligand Environment of the
Type-2 Copper Site in Copper-Containing Nitrite Reductases. J.
Am. Chem. Soc. 2008, 130, 6088–6098. (c) Lehnert, N.;
Cornelissen, U.; Neese, F.; Ono, T.; Noguchi, Y.; Okamoto, K.-I.;
Fujisawa, K. Synthesis and Spectroscopic Characterization of
Copper(II)-Nitrito Complexes with Hydrotris(Pyrazolyl)Borate
and Related Coligands. Inorg. Chem. 2007, 46, 3916–3933. (d)
Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; Gengenbach, A.
J.; Young, V. G.; Que, L.; Tolman, W. B. Synthetic Modeling of
Nitrite Binding and Activation by Reduced Copper Proteins.
Characterization of Copper(I)−Nitrite Complexes That Evolve
Nitric Oxide. J. Am. Chem. Soc. 1996, 118, 763–776.
Atom Abstraction by
a
High-Valent Manganese(V)-Oxo
Corrolazine. Inorg. Chem. 2006, 45, 5119–5125. (c) Kundu, S.;
Miceli, E.; Farquhar, E. R.; Ray, K. Mechanism of Phenol
Oxidation by Heterodinuclear Ni Cu Bis(μ-Oxo) Complexes
Involving Nucleophilic Oxo Groups. Dalton Trans. 2013, 43,
4264–4267. (d) Lee, J. Y.; Peterson, R. L.; Ohkubo, K.; Garcia-
Bosch, I.; Himes, R. A.; Woertink, J.; Moore, C. D.; Solomon, E.
I.; Fukuzumi, S.; Karlin, K. D. Mechanistic Insights into the
Oxidation of Substituted Phenols via Hydrogen Atom Abstraction
by a Cupric-Superoxo Complex. J. Am. Chem. Soc. 2014, 136,
9925–9937.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) KIE values for the hydrogen-atom-transfer (HAT) pathways are
typically higher (KIE = 325) relative to the PCET pathways.
Ref: 19,21.
(21)Osako, T.; Taki, M.; Tachi, Y.; Itoh, S.; Ohkubo, K.; Fukuzumi,
S. Oxidation Mechanism of Phenols by Dicopper-Dioxygen
(Cu2/O2) Complexes. J. Am. Chem. Soc. 2003, 125, 11027–11033.
(22) While evidences for the involvement of such intermediates are
not observed under our experimental conditions, analogous
-
species are demonstrated to be involved in NO2 reduction. Refs:
(a) Hsu, S. C. N.; Chang, Y.; Chuang, W.; Chen, H.; Lin, I.;
Chiang, M. Y.; Kao, C.; Chen, H. Copper(I) Nitro Complex with
an Anionic [HB(3,5-Me2Pz)3]− Ligand: A Synthetic Model for the
Copper Nitrite Reductase Active Site. Inorg. Chem. 2012, 51,
9297-9308. (b) Bower, J. K.; Sokolov, A. Y.; Zhang, S. Four-
Coordinate Copper Halonitrosyl {CuNO}10 Complexes. Angew.
Chem. Int. Ed. 2019, 58, 10225–10229.
(23)Astolfi, P.; Panagiotaki, M. Greci, L. New Insights into the
Reactivity of Nitrogen Dioxide with Substituted phenols: A
Solvent Effect. Chem.-Eur. J. 2005, 3052–3059.
(24)(a) Radi, R. Nitric Oxide, Oxidants, and Protein Tyrosine
Nitration. Proc. Natl. Acad. Sci. 2004, 101, 4003–4008. (b)
Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.;
Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of
Peroxynitrite and Protein Tyrosine Nitration. Chem. Rev. 2018,
118, 1338–1408.
(25)Schopfer, M. P.; Mondal, B.; Lee, D.; Sarjeant, A. A. N.; Karlin,
K. D. Heme/ O2/ •NO Nitric Oxide Dioxygenase (NOD)
Reactivity: Phenolic Nitration via a Putative Heme-Peroxynitrite
Intermediate J. Am. Chem. Soc. 2009, 131, 11304–11305.
(26)(a) Chen, J.; Yoon, H.; Lee, Y. M.; Seo, M. S.; Sarangi, R.;
Fukuzumi, S.; Nam, W. Tuning the Reactivity of Mononuclear
Nonheme Manganese(IV)-Oxo Complexes by Triflic Acid.
Chem. Sci. 2015, 6, 3624–3632. (b) Jung, J.; Kim, S.; Lee, Y. M.;
Nam, W.; Fukuzumi, S. Switchover of the Mechanism between
Electron Transfer and Hydrogen-Atom Transfer for a Protonated
Manganese(IV)–Oxo Complex by Changing Only the Reaction
Temperature. Angew. Chemie - Int. Ed. 2016, 55, 7450–7454.
(27)A similar mechanism has been demonstrated for the bromination
of electron rich aromatic compounds. Ref: Sharma, N.; Lee, Y.;
Li, X.; Nam, W.; Fukuzumi, S. Regioselective Oxybromination of
(13)Moore, C. M.; Szymczak, N. K. Nitrite Reduction by Copper
through Ligand-Mediated Proton and Electron Transfer. Chem.
Sci. 2015, 6, 3373-3377.
(14)Kundu, S.; Kim, W. Y.; Bertke, J. A.; Warren, T. H. Copper(II)
Activation of Nitrite: Nitrosation of Nucleophiles and Generation
of NO by Thiols. J. Am. Chem. Soc. 2017, 139, 1045–1048.
(15)(a) Hunt, A. P.; Batka, A. E.; Hosseinzadeh, M.; Gregory, J. D.;
Haque, H. K.; Ren, H.; Meyerhoff, M. E.; Lehnert, N. Nitric
Oxide Generation on Demand for Biomedical Applications via
Electrocatalytic Nitrite Reduction by Copper BMPA- and BEPA-
Carboxylate Complexes. ACS Catal. 2019, 9, 7746–7758. (b)
Cioncoloni, G.; Roger, I.; Wheatley, P. S.; Wilson, C.; Morris, R.
E.; Sproules, S.; Symes, M. D. Proton-Coupled Electron Transfer
Enhances the Electrocatalytic Reduction of Nitrite to NO in a
Bioinspired Copper Complex. ACS Catal. 2018, 8, 5070–5084.
(16)Garribba, E.; Micera, G. The Determination of the Geometry of
Cu(II) Complexes. J.Chem. Ed. 2006, 83, 1229-1232.
Benzene and Its Derivatives by Bromide Anion with
Mononuclear Nonheme Mn(IV) − Oxo Complex. Inorg. Chem.
2019, 58, 14299-14303..
a
(28)Control experiments (Table S3) demonstrate the role of complex
3 in phenol nitration.
(29)Gago, B.; Lundberg, J. O.; Barbosa, R. M.; Laranjinha, J. Red
Wine-Dependent Reduction of Nitrite to Nitric Oxide in the
Stomach. Free Radic. Biol. Med. 2007, 43, 1233–1242.
(30)Rocha, B. S.; Gago, B.; Barbosa, R. M.; Laranjinha, J. Dietary
Polyphenols Generate Nitric Oxide from Nitrite in the Stomach
and Induce Smooth Muscle Relaxation. Toxicology 2009, 265,
41–48.
(17)While the released NO was trapped qualitatively, the quantitation
of NO was hampered due to relatively slow reaction rate at
ambient conditions.
ACS Paragon Plus Environment