Communication
Journal of Materials Chemistry A
detector (TCD) and a FID, respectively (see GC parameters in
Table S1† and GC pneumatic circuit diagram in Fig. S9†). We
have also analyzed the liquid products by the GC measure-
ments, and no alcohol or carboxylic acid products have been
found in the liquid phase. Based on the amounts of various
products, Faradaic efficiencies have then been evaluated
3 D. T. Whipple and P. J. A. Kenis, J. Phys. Chem. Lett., 2010, 1,
3451–3458.
4 W. L. Zhu, R. Michalsky, O. Metin, H. F. Lv, S. J. Guo,
C. J. Wright, X. L. Sun, A. A. Peterson and S. H. Sun, J. Am.
Chem. Soc., 2013, 135, 16833–16836.
5 H. De Jes u´ s-Cardona, C. del Moral and C. R. Cabrera, J.
Electroanal. Chem., 2001, 513, 45–51.
(Fig. 5b). To ensure that the concentrations of products are
above the detection limit of GC, the electrochemical reaction is
run for 0.5 h at ꢀ1.75 V where the currents reach the maximum.
Although Pt nanocubes give the highest activities, they mainly
6 B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J. M. Leger
and K. B. Kokoh, J. Appl. Electrochem., 2009, 39, 227–232.
7 Y. Chen and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986–
1989.
undergo HER reaction and produce the majority of H with very
2
limited amounts of CO and CH . As expected, increasing Cu
proportion in the Cu–Pt alloy nanocubes can effectively improve
8 M. Jitaru, D. A. Lowy, M. Toma, B. C. Toma and L. Oniciu, J.
Appl. Electrochem., 1997, 27, 875–889.
4
the selectivity towards CO
Cu Pt100ꢀx nanocubes with high Cu concentration should be an
excellent candidate catalyst for the CO
tion. Notably, surface oxidation signicantly reduces the elec-
trocatalytic activities of pure Cu nanocubes, and as a result, the 11 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and
2
. Given their high stability, the
9 H. Noda, S. Ikeda, Y. Oda, K. Imai, M. Maeda and K. Ito, Bull.
x
Chem. Soc. Jpn., 1990, 63, 2459–2462.
2
electroreduction reac- 10 A. A. Peterson and J. K. Norskov, J. Phys. Chem. Lett., 2012, 3,
251–258.
incorporation of Pt into Cu Pt
pensable approach to improving the sample stability.
nanocubes is an indis-
J. K. Norskov, Energy Environ. Sci., 2010, 3, 1311–1315.
12 W. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen and
J. K. Norskov, Surf. Sci., 2011, 605, 1354–1359.
x
100ꢀx
In summary, we have developed a modied protocol for
Cu
enables the investigation of the composition–property rela-
tionship for electrocatalytic CO reduction. By systematically 14 W. Tang, A. A. Peterson, A. S. Varela, Z. P. Jovanov, L. Bech,
x
Pt100ꢀx alloy nanocubes with high Cu concentrations, which 13 N. Yang, F. Gao and C. E. Nebel, Anal. Chem., 2013, 85, 5764–
5769.
2
performing control experiments, we found out that the reduc-
tion rate in the synthesis is the key parameter to increase Cu
W. J. Durand, S. Dahl, J. K. Norskov and I. Chorkendorff,
Phys. Chem. Chem. Phys., 2012, 14, 76–81.
constituents in the nal products. At a relatively high reduction 15 J. P. Reilly, D. O'Connell and C. J. Barnes, J. Phys.: Condens.
rate, galvanic replacement impeding Cu reduction can be Matter, 1999, 11, 8417–8430.
substantially suppressed. The resulting products show greatly 16 M. S. Jin, G. N. He, H. Zhang, J. Zeng, Z. X. Xie and Y. N. Xia,
improved chemical stability and well-dened morphology Angew. Chem., Int. Ed., 2011, 50, 10560–10564.
owing to the presence of Pt, and exhibit tunable selectivity 17 R. V. Hardeveld and F. Hartog, Surf. Sci., 1969, 15, 189–230.
towards CO reduction enabled by controllable Cu concentra- 18 D. Xu, Z. Liu, H. Yang, Q. Liu, J. Zhang, J. Fang, S. Zou and
tions. This work also presents a set of promising catalysts for K. Sun, Angew. Chem., Int. Ed., 2009, 48, 4217–4221.
HER by increasing Pt concentrations in the alloy nanocubes, in 19 D. Xu, S. Bliznakov, Z. Liu, J. Fang and N. Dimitrov, Angew.
which the incorporation of Cu signicantly reduces materials Chem., Int. Ed., 2010, 49, 1282–1285.
cost. It is anticipated that this work provides insights into the 20 C. Bock, C. Paquet, M. Couillard, G. A. Botton and
2
controlled synthesis of bimetallic nanocrystals and related
electrocatalytic applications.
B. R. MacDougall, J. Am. Chem. Soc., 2004, 126, 8028–8037.
21 R. J. Best and W. W. Russell, J. Am. Chem. Soc., 1954, 76, 838–
8
42.
2 W. Kautek and J. G. Gordon II, J. Electrochem. Soc., 1990, 137,
672–2677.
3 W. G. Zhao, L. N. Yang, Y. D. Yin and M. S. Jin, J. Mater.
Chem. A, 2014, 2, 902–906.
4 Z. C. Xu, E. Lai, Y. Shao-Horn and K. Hamad-Schifferli,
Chem. Commun., 2012, 48, 5626–5628.
5 H. A. Hansen, J. B. Varley, A. A. Peterson and J. K. Norskov, J.
Phys. Chem. Lett., 2013, 4, 388–392.
6 X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan and
H. Zhang, Nat. Commun., 2013, 4, 1444–1446.
7 D. V. Psposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson,
B. E. McCandless, R. W. Birkmire and J. G. Chen, Angew.
Chem., Int. Ed., 2010, 49, 9859–9862.
2
2
2
2
2
2
Acknowledgements
2
This work was nancially supported by the NSFC (no. 21101145,
2
1471141), Recruitment Program of Global Experts, CAS
Hundred Talent Program, and Fundamental Research Funds
for the Central Universities (no. WK2060190025,
WK2310000035).
Notes and references
1
A. Goeppert, M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah
and S. R. Narayanan, J. Am. Chem. Soc., 2011, 133, 20164–
20167.
2
8 N. M. Markovi ´c , B. N. Grgur and P. N. Ross, J. Phys. Chem. B,
2
C. Graves, S. D. Ebbesen, M. Mogensen and K. S. Lackner,
1997, 101, 5405–5413.
Renewable Sustainable Energy Rev., 2011, 15, 1–23.
This journal is © The Royal Society of Chemistry 2015
J. Mater. Chem. A