2626
X. Zhang et al. / Tetrahedron Letters 47 (2006) 2623–2626
nant, P.; Zhao, H.; Chickos, J. S. J. Phys. Chem. B. 2005,
109, 12590; (c) Markov, P. Chem. Soc. Rev. 1984, 13, 69.
2. Tumambac, G. E.; Francis, C. J.; Wolf, C. Chirality 2005,
17, 171.
3. (a) Jaafari, A.; Ouzeau, V.; Ely, M.; Rodriguez, F.; Chane-
ching, K.; Yassar, A.; Aaron, J. J. Synth. Met. 2004, 147,
183; (b) Godsi, O.; Turner, B.; Suwinska, K.; Peskin, U.;
Eichen, Y. J. Am. Chem. Soc. 2004, 126, 13519.
4. Iglesias, E. J. Org. Chem. 2003, 68, 2680.
Such reversible photochemical and photophysical prop-
erties at a molecular level may be of great significance
in designing new optoelectronic materials and devices.
Recently, several classes of molecular switches such as
pyrazoline, anthracene, and crown ether derivatives
have been reported.18–20 Cumpston et al. demonstrated
high-density optical storage-memory techniques based
on fluorescence bits read-out and recording.21 Their
data storage is inerasable due to irreversible fluorescence
behavior. According to our results, the reversible fluo-
rescence behavior based on keto-enol tautomerism
may provide a fascinating opportunity in designing a
novel class of molecular switches and exploring erasable
data storage devices.
5. Matanovic, I.; Doslic, N. J. Phys. Chem. A. 2005, 109,
4185.
6. Petkov, I.; Sertova, N.; Grigorov, L.; Masuda, S. J.
Photochem. Photobiol. A-Chem. 1995, 85, 191.
7. (a) Zhang, X.; Du, F. S.; Li, Z. C.; Li, F. M. Macromol.
Rapid. Comm. 2001, 22, 983; (b) Zhang, X.; Jin, Y. H.;
Diao, H. X.; Du, F. S.; Li, Z. C.; Li, F. M. Macromole-
cules 2003, 36, 3115; (c) Zhang, X.; Li, Z. C.; Wang, Z. M.;
Sun, H. L.; He, Z.; Li, K. B.; Wei, L. H.; Lin, S.; Du, F. S.;
Li, F. M. J. Polym. Sci., Polym. Chem. 2006, 44, 304;
(d) Wang, B. B.; Zhang, X.; Jia, X. R.; Li, Z. C.; Ji, Y.;
Yang, L.; Wei, Y. J. Am. Chem. Soc. 2004, 126, 15180.
8. Zhang, X.; Li, Z. C.; Li, K. B.; Du, F. S.; Li, F. M. J. Am.
Chem. Soc. 2004, 126, 12200.
9. Popic, V. V.; Korneev, S. M.; Nikolaev, V. A.; Korobi-
tsyna, I. K. Synthesis 1991, 195.
10. Boyer, J.; Corriu, R. J. P.; Perz, R.; Reye, C. Tetrahedron
1983, 39, 117.
11. (a) Hauser, C. R.; Swamer, F. W.; Adams, J. T. In Organic
Reactions; Adams, R., Ed.; John Wiley & Sons: New
York, 1954; Vol. 8, p 59; (b) El-Kholy, I. E.; Marei, M. G.;
Mishrikey, M. M. J. Heterocycl. Chem. 1979, 16, 737.
12. Linn, B. O.; Hauser, C. R. J. Am. Chem. Soc. 1956, 78,
6066.
13. (a) Calter, M. A.; Liao, W. J. Am. Chem. Soc. 2002, 124,
13127; (b) Smith, A. B., III; Levenberg, P. A. Synthesis
1981, 567.
In summary, saturated b-diketones (1 and 2), and unsatu-
rated b-diketone (A(=)–D 3) bearing aromatic amine
donors were found to have both keto and cis-enol forms
in a solution. The enol is the predominant form in a
solution as revealed by NMR spectroscopy. In contrast,
the novel b-triketone 4 exists in only one enol form in
the solution. The saturated b-diketones 1 and 2 display
a strong fluorescence, however, almost no fluorescence
was observed for the unsaturated b-diketone A(=)–D 3.
Reversible photoinduced ketonization of these b-di-
ketones was observed. The fluorescence intensities de-
creased gradually during photoinduced ketonization.
Based on the reversible keto-enol tautomerization, the
fluorescence emission was reversibly switched between
the ‘ON’ state in cis-enol form, and the ‘OFF’ state in
keto form. Such reversible photochemical and photo-
physical properties at a molecular level may provide
an opportunity in designing a novel class of molecular
switches and devices.
14. (a) Fluorescence quantum yields (Q) were calculated from
the integrated intensity under the emission band (I) using
the following equation:
Acknowledgments
n2
nr2
ODr
Ir OD
I
Q ¼ Qr
Financial support from the National Natural Science
Foundation of China (No. 50003001) is gratefully
acknowledged. Authors thank Dr. Liu-He Wei and
Ms. Xiao-Nan Huang for kind help.
where OD is the optical density of the solution at the
excitation wavelength, and n is the refractive index. The
optical density of the solution for the calculation of
quantum yields was less than 0.1 at the excitation
wavelength. 9,10-Diphenylanthrene in cyclohexane was
used as reference (Qr = 0.90); (b) Eaton, D. F. Pure. Appl.
Chem. 1988, 60, 1107.
Supplementary data
15. Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem.
Soc. 2000, 122, 10405.
16. Huang, F. X.; Wu, Y. Q.; Gu, D. H.; Gan, F. X.
Spectrosc. Spectr. Anal. 2005, 25, 141.
17. Masuda, S.; Sertova, N.; Petkov, I. J. Polym. Sci., Polym.
Chem. 1997, 35, 3683.
18. Ghosh, P.; Bharadwaj, P. K.; Mandal, S.; Ghosh, S. J.
Am. Chem. Soc. 1996, 118, 1553.
1
Synthesis and spectroscopic data of 1, 2, 3, and 4; H
1
NMR spectra of 2 and 3 in CDCl3; H NMR spectrum
of 2 in CDCl3 after UV irradiation (60 min); TGA/DTA
curves of 1 and 3; schematic representation for the ther-
mal behavior of 3; absorption spectrum of 4 in aceto-
nitrile; schematic representation for the energy minimum
conformations of the enol and keto forms of 1 and 3;
energy level diagrams of enol and keto forms of 1. Supple-
mentary data associated with this article can be found,
19. de Silva, P. A.; Gunaratne, N. H. Q.; McCoy, C. P. Nature
1993, 364, 42.
20. Aviram, A. J. Am. Chem. Soc. 1988, 110, 5687.
21. Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D.
L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S.
M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J. Q.;
Rockel, H.; Rumi, M.; Wu, X. L.; Marder, S. R.; Perry, J.
W. Nature 1999, 398, 51.
References and notes
1. (a) Dziembowska, T.; Rozwadowski, Z. Curr. Org. Chem.
2001, 5, 289; (b) Temprado, M.; Roux, M. V.; Umnaha-
22. Lakowicz, J. R. Principles of Fluorescence Spectroscopy,
2nd ed.; Plenum Press: New York, 1999; p 239.