which are still widely practiced in synthesis today.1 However,
the use of R-halocarbonyls compounds as zinc enolate pre-
cursors is not without limitations. Although simple R-halo-
carbonyls are readily available, more complex substrates
require the installation of the halide in a separate step, which
may pose problems when sensitive functional groups are
present.
ketones10 in situ to furnish tertiary alcohol-containing aldol
products.
Our studies commenced with the reactions of a range of
ketones with commercially available N,N-dimethylacrylamide
(4) (Table 1) and 4-acryloylmorpholine (7) (Table 2). Under
A third method to prepare zinc enolates is via the cata-
lytic conjugate addition of organozinc reagents to an R,â-
unsaturated carbonyl compound.6 Although this method may
benefit from the advantages of chemically robust, readily
available precursors and high regioselectivity of enolate
formation under mild conditions, the R,â-unsaturated car-
bonyl compounds that may be employed are often restricted
to enones. More synthetically versatile but less reactive R,â-
unsaturated carboxylic acid derivatives remain challenging
substrates for catalytic organozinc conjugate additions.7
Furthermore, this method necessitates the formation of a
carbon-carbon bond and often a new stereogenic center.
Although desired in some cases, other synthetic applications
may not require this increase in complexity. Therefore, the
development of an analogous method that results in the
formation of a carbon-hydrogen bond using R,â-unsaturated
carboxylic acid derivatives should be of utility.
Table 1. Cobalt-Catalyzed Reductive Aldol Reactions of
N,N-Dimethylacrylamide (4) with Representative Ketonesa
entry
R
product(s)
drb
5:1
yield(s) (%)c
1
2
3
4
5
6
7
8
Ph
5a
75
2-MePh
4-MePh
4-MeOPh
2-BrPh
5b
5c
5d
5e
9:1
5.5:1
6:1
68
79
84
56
7:1
4-BrPh
2-naphthyl
2-furyl
5f, 6f
5g
5h, 6h
3.5:1
5:1
2.5:1
73 (15)
78
66 (25)
We recently reported a method for the generation of zinc
enolates that meets these criteria.8 In the presence of a sub-
stoichiometric quantity of a cobalt salt, diethylzinc mediates
the conjugate reduction of R,â-unsaturated amides 1 to form
ethylzinc enolates 2 that participate in high-yielding diaste-
reoselective aldol cyclizations with tethered ketone elec-
trophiles (Scheme 1). Herein, we report that the Co/Et2Zn
a Reactions were conducted using 1.0 mmol of 4 and 1.1 mmol of ketone
in THF (10 mL) and hexane (2 mL) for 1-29 h. b Determined by 1H NMR
analysis of the unpurified reaction mixtures. c Isolated yield of major
diastereomer; numbers in parentheses refer to yields of minor diastereomers
if isolated.
conditions similar to those employed in our previous study,8
amides 4 and 7 underwent smooth reductive aldol reactions
with a range of acetophenone derivatives containing sub-
stituents of varying electronic properties to provide the
corresponding aldol products with up to 9:1 diastereomeric
ratio and 85% isolated yield of the major diastereomer (Table
1, entries 1-6, and Table 2, entries 1-3). The beneficial
effect of ortho-substitution in the acetophenone on the
diastereoselectivity of the reaction should be noted (Table
1, entries 2 and 5, and Table 2, entry 2). Reactions with
ketones containing naphthyl and furyl substituents were
successful (Table 1, entries 7-8, and Table 2, entries 4-5),
Scheme 1. Cobalt-Catalyzed Reductive Aldol Cyclization
system is able to promote the corresponding intermolecular
reductive aldol reactions9 of R,â-unsaturated amides with
(8) Lam, H. W.; Joensuu, P. M.; Murray, G. J.; Fordyce, E. A. F.; Prieto,
O.; Luebbers, T. Org. Lett. 2006, 8, 3729-3732.
(6) For an early report, see: (a) Kitamura, M.; Miki, T.; Nakano, K.;
Noyori, R. Tetrahedron Lett. 1996, 37, 5141-5144. For selected examples
of sequential catalytic asymmetric conjugate addition-electrophilic trapping
reactions using organozinc reagents, see: (b) Feringa, B. L.; Pineschi, M.;
Arnold, L. A.; Imbos, R.; de Vries, A. H. M. Angew. Chem., Int. Ed. 1997,
36, 2620-2623. (c) Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B.
L. J. Org. Chem. 2002, 67, 7244-7254. (d) Naasz, R.; Arnold, L. A.;
Pineschi, M.; Keller, E.; Feringa, B. L. J. Am. Chem. Soc. 1999, 121, 1104-
1105. (e) Alexakis, A.; Trevitt, G. P.; Bernardinelli, G. J. Am. Chem. Soc.
2001, 123, 4358-4359. (f) Degrado, S. J.; Mizutani, H.; Hoveyda, A. H.
J. Am. Chem. Soc. 2001, 123, 755-756. (g) Mizutani, H.; Degrado, S. J.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 779-781. (h) Agapiou, K.;
Cauble, D. F.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4528-4529.
(7) For recent examples of catalytic enantioselective conjugate additions
of organozinc reagents to R,â-unsaturated carboxylic acid derivatives, see:
(a) Brown, M. K.; Degrado, S. J.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2005, 44, 5306-5310. (b) Hird, A. W.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2003, 42, 1276-1279. (c) Schuppan, J.; Minaard, A. J.; Feringa,
B. L. Chem. Commun. 2004, 792-793.
(9) For cobalt-catalyzed reductive aldol reactions, see: (a) Isayama, S.;
Mukaiyama, T. Chem. Lett. 1989, 2005-2008. (b) Wang, L.-C.; Jang,
H.-Y.; Roh, Y.; Lynch, V.; Schultz, A. J.; Wang, X.; Krische, M. J. J. Am.
Chem. Soc. 2002, 124, 9448-9453. For reductive aldol reactions catalyzed
by other metals, see references cited within: (c) Ngai, M.-Y.; Kong, J.-R.;
Krische, M. J. J. Org. Chem. 2006, 72, 1063-1072. For relevant reviews,
see: (d) Nishiyama, H.; Shiomi, T. Top. Curr. Chem. 2007, 279, 105-
137. (e) Jang, H.-Y.; Krische, M. J. Eur. J. Org. Chem. 2004, 3953-3958.
(f) Jang, H.-Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653-661. (g)
Huddleston, R. R.; Krische, M. J. Synlett 2003, 12-21. (h) Chiu, P. Synthesis
2004, 2210-2215. (i) Motherwell, W. B. Pure Appl. Chem. 2002, 74, 135-
142.
(10) For catalytic enantioselective reductive aldol reactions with ketones,
see: (a) Lam, H. W.; Joensuu, P. M. Org. Lett. 2005, 7, 4225-4228. (b)
Deschamp, J.; Chuzel, O.; Hannedouche, J.; Riant, O. Angew. Chem., Int.
Ed. 2006, 45, 1292-1297. (c) Zhao, D.; Oisaki, K.; Kanai, M.; Shibasaki,
M. Tetrahedron Lett. 2006, 47, 1403-1407. (d) Zhao, D.; Oisaki, K.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 14440-14441. (e) Shiomi,
T.; Nishiyama, H. Org. Lett. 2007, 9, 1651-1654.
4368
Org. Lett., Vol. 9, No. 21, 2007