F.N. Hosseini et al. / Polyhedron 30 (2011) 814–820
[3] R. Criegee, Justus Liebigs Ann. Chem. 522 (1936) 75.
819
3
.4.
DH–DS compensation plot
[
4] (a) H.S. Singh, in: W.J. Mijs, C.R.H.I. de Jonge (Eds.), Organic Syntheses by
Oxidation with Metal Compounds, Plenum Press, New York, 1986, p. 633;
Enthalpy–entropy compensations between
D
H and DS are a
(
b) A.H. Haines, in: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic
type of thermodynamic relationship that is widely used for numer-
ous chemical equilibriums and kinetic processes to discuss their
mechanisms [36]. An enthalpy–entropy compensation is demon-
Synthesis, vol. 7, Pergamon, Oxford, 1991, p. 437.
5] (a) D. Sica, D. Musumeci, F. Zollo, S. De Marino, Eur. J. Org. Chem. (2001) 3731;
[
(
(
b) D. Sica, D. Musumeci, F. Zollo, S. De Marino, J. Chem. Soc., Perkin Trans. 1
2001) 1889;
strated by a linear correlation between
the linear plot of the enthalpy change versus the entropy change
is called the compensation temperature (T ). Chemical reactions
D
H and
D
S. The slope of
(c) D. Musumeci, D. Sica, Steroids 67 (2002) 661;
(
(
(
d) A.M. Al-Ajlouni, J.H. Espenson, J. Am. Chem. Soc. 117 (1995) 9243;
e) A.M. Al-Ajlouni, J.H. Espenson, J. Org. Chem. 61 (1996) 3969;
f) W. Adam, C.R. Saha-Möller, O. Weichold, J. Org. Chem. 65 (2000) 5001.
c
or equilibrium processes that have a similar compensation temper-
ature are considered to be fundamentally related and mechanisti-
cally similar. These compensation temperatures are, respectively,
called isokinetic or isoequilibrium processes. An enthalpy–entropy
[6] (a) W.A. Herrmann, F.E. Kühn, Acc. Chem. Res. 30 (1997) 169. and references
therein;
(
(
b) F.E. Kühn, A.M. Santos, W.A. Herrmann, Dalton Trans. (2005) 2483;
c) F.E. Kühn, A. Scherbaum, W.A. Herrmann, J. Organomet. Chem. 689 (2004)
4149;
(
(
d) W.A. Herrmann, J. Organomet. Chem. 500 (1995) 149;
e) D.V. Deubel, G. Frenking, P. Gisdakis, W.A. Herrmann, N. Rösch, J.
compensation is usually represented as
Tc is the Gibbs free energy change at temperature T
tion means that, at temperatures close to T , changes in
G remains independent of the
D
H ¼ T
c
DS þ
D
G c
. This equa-
H are off-
T
where
DG
c
Sundermeyer, Acc. Chem. Res. 37 (2004) 645;
(f) F.E. Kühn, A.M. Santos, P.W. Roesky, E. Herdtweck, W. Scherer, P. Gisdakis,
I.V. Yudanov, C.D. Valentin, N. Rösch, Chem. Eur. J. 5 (1999) 3603;
c
D
set by changes in
temperature [36].
DS, so that D
(
g) W. Adam, C.M. Mitchell, C.R. Saha-Möller, J. Org. Chem. 64 (1999) 3699.
7] (a) R.W. Murray, K. Iyanar, J. Chen, J.T. Wearing, J. Org. Chem. 61 (1996) 8099;
b) A. Goti, L. Nannelli, Tetrahedron Lett. 37 (1996) 6025.
[8] Z. Zhu, J.H. Espenson, J. Org. Chem. 60 (1995) 7728.
9] Z. Zhu, J.H. Espenson, J. Org. Chem. 60 (1995) 1326.
10] (a) P. Huston, J.H. Espenson, A. Bakac, Inorg. Chem. 32 (1993) 4517;
b) K.A. Vassell, J.H. Espenson, Inorg. Chem. 33 (1994) 5491;
(c) W. Adam, C.M. Mitchell, C.R. Saha-Möller, Tetrahedron 50 (1994) 13121;
d) D.W. Lahti, J.H. Espenson, Inorg. Chem. 39 (2000) 2164.
[
Thermodynamic parameters indicate that the enthalpy–entropy
compensation effect holds in general for ligand exchange between
(
[
MTO and OsO
4
. As shown in Fig. 6, an acceptable linear relationship
S for this reaction is observed. The graph of en-
[
between H and
D
D
(
thalpy versus entropy values for reactions shown in Scheme 6 in
benzene generates a highly linear trend and can be expressed by
(
[
[
[
[
[
11] M.M. Abu-Omar, J.H. Espenson, J. Am. Chem. Soc. 117 (1995) 272.
12] Y. Wang, J.H. Espenson, J. Org. Chem. 65 (2000) 104.
13] T.H. Zauche, J.H. Espenson, Inorg. Chem. 37 (1998) 6827.
14] M.M. Abu-Omar, J.H. Espenson, Organometallics 15 (1996) 3543.
15] (a) J.H. Espenson, O. Pestovsky, P. Huston, S. Staudt, J. Am. Chem. Soc. 116
D
H ¼ T
The value of T
c
D
S ꢁ 6:55 kJ=mol
is derived from the slope of the slope of the plot
c
and has unit of temperature [37] and is equal to 273 ± 24 K. At this
temperature, any variation in the standard enthalpy for a series of
pyridines is balanced by a compensating variation in the standard
(
1994) 2869;
(b) P.J. Hansen, J.H. Espenson, Inorg. Chem. 34 (1995) 5839.
[16] (a) M.V. Kirillova, A.M. Kirillov, P.M. Reis, J.A.L. Silva, J.J.R. Fraústo da Silva,
A.J.L. Pombeiro, J. Catal. 248 (2007) 130;
entropy, such that the total free energy (DG) of the reaction (the y
ˇ
(
(
b) U. Schuchardt, D. Mandelli, G.B. Shulpin, Tetrahedron Lett. 37 (1996) 6487;
intercept of the plot) remains constant at ꢁ6.55 kJ/mol.
c) E.C.B. Alegria, M.V. Kirillova, L.M.D.R.S. Martins, A.J.L. Pombeiro, Appl.
To test the reliability of enthalpy–entropy compensation corre-
lation, Krug’s method can be applied [38] which suggests that the
Catal. A 317 (2007) 43;
d) R.W. Murray, K. Iyanar, J. Chen, J.T. Wearing, Tetrahedron Lett. 36 (1995)
415.
17] W.A. Herrmann, M. Wang, Angew. Chem., Int. Ed. Engl. 30 (1991) 1641.
(
6
c
observed compensation temperature T must be significantly dif-
[
ferent from the mean experimental temperature. For the reactions
shown in Scheme 6 with pyridine and its derivatives, the mean
experimental temperature is significantly different from the ob-
[18] (a) E. Verkuijlen, F. Kapsteijn, J.C. Mol, C. Boelhouwer, J. Chem. Soc., Chem.
Commun. (1977) 198;
(
b) W.A. Herrmann, W. Wagner, U.N. Flessner, U. Volkhardt, H. Komber,
Angew. Chem., Int. Ed. Engl. 30 (1991) 1636.
[19] (a) W.A. Herrmann, R.W. Fischer, W. Scherer, M.U. Rauch, Angew. Chem., Int.
Ed. Engl. 32 (1993) 1157;
served T
effect between
rather than simply an artifact of statistical correlation.
c
(298 versus 273 ± 24 K). Furthermore the compensation
D
H and S may be indicative of chemical fact
D
(
b) J.H. Espenson, J. Chem. Soc., Chem. Commun. (1999) 479. and references
therein.
[
[
20] W.A. Herrmann, R.W. Fischer, D.W. Marz, Angew. Chem., Int. Ed. Engl. 30
(
1991) 1638.
21] (a) W. Adam, C.M. Mitchell, Angew. Chem., Int. Ed. Engl. 35 (1996) 533;
b) T.R. Boehlow, C.D. Spilling, Tetrahedron Lett. 37 (1996) 2717.
[22] J. Rudolph, K.L. Reddy, J.P. Chiang, K.B. Sharpless, J. Am. Chem. Soc. 119 (1997)
189.
4
. Conclusion
(
Equilibrium constants for reactions in which a series of pyridine
6
4
ligands transfer from OsO to MTO have been evaluated. The ex-
[
[
23] C. Coperét, H. Adolfsson, K.B. Sharpless, Chem. Commun. (1997) 1565.
24] W.A. Herrmann, R.W. Fischer, M.U. Rauch, W. Scherer, J. Mol. Catal. 86 (1994)
243.
change reaction is governed by electronic effect and the values of
equilibrium constants correlate with the Hammett reaction con-
stant. The enthalpy and entropy of the reactions were measured
and an acceptable linear relationship between
observed.
[
[
25] (a) C. Döbler, G. Mehltretter, M. Beller, Angew. Chem., Int. Ed. 38 (1999) 3026;
(
(
b) C. Döbler, G. Mehltretter, U. Sundermeier, M. Beller, J. Am. Chem. Soc. 122
2000) 10289;
DH and DS is
(c) B.M. Choudary, N.S. Chowdari, S. Madhi, M.L. Kantam, Angew. Chem., Int.
Ed. 40 (2001) 4619.
26] (a) K. Bergstad, S.Y. Jonsson, J.E. Bäckvall, J. Am. Chem. Soc. 121 (1999) 10424;
Acknowledgment
(
1
b) S.Y. Jonsson, K. Färnegårdh, J.E. Bäckvall, J. Am. Chem. Soc. 123 (2001)
365.
[
[
[
27] S.Y. Jonsson, H. Adolfsson, J.E. Bäckvall, Chem. Eur. J. 9 (2003) 2783.
28] M. Johansson, A.A. Lindén, J.E. Bäckvall, J. Organomet. Chem. 690 (2005) 3614.
29] W.A. Herrmann, R.M. Kratzer, R.W. Fischer, Angew. Chem., Int. Ed. Engl. 36
Financial support of the Islamic Azad University, Shiraz Branch,
Iran (Grant No. 89.495) is gratefully acknowledged.
(
1997) 2652.
30] (a) R.J. Collin, J. Jones, W.P. Griffith, J. Chem. Soc., Dalton Trans. (1974) 1094;
b) H. Kunkely, A. Vogler, Inorg. Chem. Comm. 1 (1998) 7.
[
[
[
References
(
31] L. Zékány, I. Nagypál, in: D. Leggett (Ed.), Computational Methods for the
Determination Of Formation Constants, Plenum Press, New York, 1985.
32] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P.Y. Ayala,
[
[
1] (a) H.C. Kolb, M.S. Van Nieuwenhze, K.B. Sharpless, Chem. Rev. 94 (1994)
483;
b) U. Sundermeier, C. Döbler, M. Beller, in: J.E. Bäckvall (Ed.), Modern
Oxidation Methods, Wiley-VCH, Weinheim, 2004;
c) M. Schroder, Chem. Rev. 80 (1980) 187.
2
(
(
2] (a) D.W. Nelson, A. Gypser, P.T. Ho, H.C. Kolb, T. Kondo, H.-L. Kwong, D.V.
McGrath, A.E. Rubin, P.-O. Norrby, K.P. Gable, K.B. Sharpless, J. Am. Chem. Soc.
1
19 (1997) 1840;
(
b) T. Katsuki, K.B. Sharpless, J. Am. Chem. Soc. 102 (1980) 5974.