Communication
ChemComm
7 For selected reviews, see: (a) O. Jacobson, D. O. Kiesewetter and X. Chen,
Bioconjugate Chem., 2015, 26, 1; (b) J.-L. Zeng, J. Wang and J.-A. Ma,
Bioconjugate Chem., 2015, 26, 1000; (c) V. Bernard-Gauthier, J. J.
sulfonic acid instead of HCl also led to the formation of the
radioactive product, but both radiochemical yields and molar
activities decreased in this case (28.0% and 61 GBq mmolÀ1
,
¨
¨
Bailey, Z. Liu, B. Wangler, C. Wangler, K. Jurschat, D. M. Perrin and
R. Schirrmacher, Bioconjugate Chem., 2016, 27, 267; (d) H. S. Krishnan,
L. Ma, N. Vasdev and S. H. Liang, Chem. – Eur. J., 2017, 23, 15553.
8 For selected examples, see: (a) C. A. D’Souza, W. J. McBride, R. M.
Sharkey, L. J. Todaro and D. M. Goldenberg, Bioconjugate Chem., 2011,
22, 179; (b) W. Wang, Z. Liu and Z. Li, Bioconjugate Chem., 2015, 26, 24.
9 For selected examples, see: (a) R. Ting, M. J. Adam, T. J. Ruth and D. M.
Perrin, J. Am. Chem. Soc., 2005, 127, 13094; (b) Z. Liu, M. Pourghiasian,
respectively, Table 2, entry 4).
Using 10 equivalents of acetic acid proved to be as efficient as
1 equivalent of aqueous HCl (34.9 Æ 2.8% RCY, 89 Æ 20 GBq mmolÀ1
MA, n = 2, Table 2, entry 5), and could be more suitable for sensitive
molecules with multiple basic sites (i.e. peptides, ...). It should be
noted that control experiments under the conditions of entry 3 of
Table 2 with both 3h or [19F]4e only lead to limited amounts of the
radioactive [18F]4e (less than 1% RCY, see the ESI†).17 Finally,
radiofluorination of the highly functionalised cycloRGD-based pre-
cursor 3g was examined. In this case, 2 equivalents of AcOH and a
reaction time of 30 min proved to be the best conditions (see the
ESI†). Indeed, a good RCY of 20.4 Æ 7.7% could be obtained with an
excellent molar activity of 129 Æ 37 GBq mmolÀ1, which would be
fully suitable for biological applications with high specificity require-
ments (n = 4, Table 2, entry 6).
´
M. A. Radtke, J. Lau, J. Pan, G. M. Dias, D. Yapp, K.-S. Lin, F. Benard and
D. M. Perrin, Angew. Chem., Int. Ed., 2014, 53, 11876; (c) D. M. Perrin, Acc.
Chem. Res., 2016, 49, 1333; (d) B. Brizet, V. Goncalves, C. Bernhard,
P. D. Harvey, F. Denat and C. Goze, Chem. – Eur. J., 2014, 20, 12933;
¨
(e) K. Chansaenpak, M. Wang, Z. Wu, R. Zaman, Z. Li and F. P. Gabbaı,
Chem. Commun., 2015, 51, 12439; ( f) K. Chansaenpak, H. Wang, M. Wang,
B. Giglio, X. Ma, H. Yuan, S. Hu, Z. Wu and Z. Li, Chem. – Eur. J., 2016,
22, 12122; (g) E. A. Rodriguez, Y. Wang, J. L. Crisp, D. R. Vera, R. Y. Tsien
and R. Ting, Bioconjugate Chem., 2016, 27, 1390.
10 For selected isotopic exchange examples, see: (a) R. Schirrmacher,
¨
G. Bradtmoller, E. Schirrmacher, O. Thews, J. Tillmanns, T. Siessmeier,
¨
H. G. Buchholz, P. Bartenstein, B. Wangler, C. M. Niemeyer and
¨
K. Jurkschat, Angew. Chem., Int. Ed., 2006, 45, 6047; (b) C. Wangler,
S. Niedermoser, J. Chin, K. Orchowski, E. Schirrmacher, K. Jurkschat,
To conclude, we designed and synthesized new 2-(aryl-di-tert-
butylsilyl)-N-methyl-imidazole structures that can be easily conjugated
to biomolecules. While being highly stable under various conditions,
such moieties were very reactive and selective towards fluoride upon
¨
L. Iovkova-Berends, A. P. Kostikov, R. Schirrmacher and B. Wangler, Nat.
Protoc., 2012, 7, 1946; (c) S. Lindner, C. Michler, S. Leidner, C. Rensch,
¨
¨
C. Wangler, R. Schirrmacher, P. Bartenstein and B. Wangler, Bioconjugate
Chem., 2014, 25, 738; (d) M. Glaser, P. Iveson, S. Hoppmann, B. Indrevoll,
A. Wilson, J. Aruke, A. Danikas, R. Bhalla and D. Hiscock, J. Nucl. Med.,
2013, 54, 1981.
¨
activation by strong or weak Bronsted acids, even in aqueous
mixtures. After observing the excellent functional tolerance in model
19F-fluorinations, the reaction conditions were easily transferred to
the radioactive [18F]FÀ by slightly increasing the reaction temperature.
18F-Labelled nucleoside- and peptide-based bioconjugates were
obtained from an aqueous saline solution of [18F]NaF in good RCY
with high molar activities perfectly suitable for potential preclinical/
clinical applications. Thus, these compounds opened the way to a
new class of SIFA precursors using heterocyclic moieties as carbon-
based leaving groups. Further developments to improve the procedure
and the radiochemical yields (microwave heating,18...), as well as
detailed mechanistic investigations, are currently in progress.
This study was supported by a public grant from the French
Agence Nationale de la Recherche within the context of the
Investments for the Future Program, referenced ANR-10-LABX-57
and named TRAIL (SUPSIFLU project).
11 For selected other nucleophilic substitution examples, see: (a) L. Mu,
¨
A. Hohne, P. A. Schubiger, S. M. Ametamey, K. Graham, J. E. Cyr,
L. Dinkelborg, T. Stellfeld, A. Srinivasan, U. Voigtmann and U. Klar,
¨
Angew. Chem., Int. Ed., 2008, 47, 4922; (b) A. Hohne, L. Yu, L. Mu,
M. Reiher, U. Voigtmann, U. Klar, K. Graham, P. A. Schubiger and
S. M. Ametamey, Chem. – Eur. J., 2009, 15, 3736; (c) J. Schulz, D. Vimont,
T. Bordenave, D. James, J.-M. Escudier, M. Allard, M. Szlosek-Pinaud and
E. Fouquet, Chem. – Eur. J., 2011, 17, 3096; (d) E. Amigues, J. Schulz,
M. Szlosek-Pinaud, P. Fernandez, S. Silvente-Poirot, S. Brillouet,
F. Courbon and E. Fouquet, ChemPlusChem, 2012, 77, 345;
(e) P. P. Hazari, J. Schulz, D. Vimont, N. Chada, M. Allard, M. Szlosek-
Pinaud, E. Fouquet and A. K. Mishra, ChemMedChem, 2014, 9, 337;
( f ) B. Rugeri, H. Audi, P. Jewula, R. Koudih, R. Malacea-Kabbara,
´
D. Vimont, J. Schulz, P. Fernandez and S. Juge, Eur. J. Org. Chem.,
2017, 5399; (g) M. H. Al-huniti, S. Lu, V. W. Pike and S. D. Lepore,
J. Fluorine Chem., 2014, 158, 48; (h) S. Jana, M. H. Al-huniti, B. Y. Yang,
S. Lu, V. W. Pike and S. D. Lepore, J. Org. Chem., 2017, 82, 2329; (i) S. H.
Kim, V. M. Carroll, D. Zhou, C. S. Dence and J. A. Katzenellenbogen,
J. Labeled Compd. Radiopharm., 2013, 56, S157; ( j) N. Yasui, S. H. Kim,
V. M. Carroll, D. Zhou, C. S. Dence and J. A. Katzenellenbogen, J. Labeled
Compd. Radiopharm., 2013, 56, S158.
12 R. S. Brown, H. Slebocka-Tilk, J. M. Buschek and J. G. Ulan, J. Am.
Chem. Soc., 1984, 106, 5979.
Conflicts of interest
13 Yields are dependent on the purity of the commercial tert-butylsilyl
bis(trifluoromethanesulfonate) employed, which often contains
hydrolysis products (the ratio can be determined using 1H NMR).
All our attempts to purify it prior to use were unsuccessful.
14 (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew.
Chem., Int. Ed., 2002, 41, 2596; (b) C. W. Tornøe, C. Christensen and
M. J. Meldal, J. Org. Chem., 2002, 67, 3057.
There are no conflicts to declare.
Notes and references
1 S. M. Ametamey, M. Honer and P. A. Schubiger, Chem. Rev., 2008,
108, 1501.
15 The pKa of [2b + H]+/2b was determined to be 6.26 in H2O. See the
ESI† for details.
2 (a) S. Preshlock, M. Tredwell and V. Gouverneur, Chem. Rev., 2016,
116, 719; (b) M. G. Campbell, J. Mercier, C. Genicot, V. Gouverneur, 16 The differences between the 1H NMR yields and the isolated yields
J. M. Hooker and T. Ritter, Nat. Chem., 2017, 9, 1.
3 S. H. Liang and N. Vasdev, Aust. J. Chem., 2015, 68, 1319.
4 C. N. Neumann and T. Ritter, Angew. Chem., Int. Ed., 2015, 54, 3216.
after purification using column chromatography on silica gel can be
explained by the difficulties encountered when working with such
small amounts of highly polar compounds.
5 (a) K. Chen and P. S. Conti, Adv. Drug Delivery Rev., 2010, 62, 1005; 17 Anhydrous conditions from ref. 11c with 3h led to a higher RCY of
(b) C. L. Charron, A. L. Farnsworth, P. D. Roselt, R. J. Hicks and
C. A. Hutton, Tetrahedron Lett., 2016, 57, 5119.
6 For a review, see: (a) D. O’Hagan and H. Deng, Chem. Rev., 2015,
[
18F]4e (46.3%), but the activity yield (AY) was lower than the best AY
obtained with 3e, due to the additional time needed for the
azeotropic drying of [18F]fluoride. See the ESI† for details.
115, 634. For a recent example, see: (b) Q. Zhang, S. Dall’Angelo, 18 Microwaving in F-18 Chemistry: Quirks and Tweaks. in PET Chemistry,
I. N. Fleming, L. F. Schweiger, M. Zanda and D. O’Hagan,
Chem. – Eur. J., 2016, 22, 10998.
ed. P. A. Schubiger, L. Lehmann and M. Friebe, Springer, Berlin,
Heidelberg, 2007, pp. 243–269.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018