Asymmetric Synthesis of γ-Fluorinated α-Amino Acid Derivatives
FULL PAPER
CH-C(CH3)3), 64.1 (s, N-C*-CO), 81.0 (d, N-CH-N), 81.1 (s, CO- CH-N). 13C NMR (75.48 MHz, CDCl3): δ = 23.7 (q, H2C=CH-
2
C(CH3)3), 94.1 (ddd, JC,F = 20.0 Hz, CF=CH2), 154.2 (s, N-CO- CH3), 26.5 (3 × q, CH-C(CH3)3), 28.1 (3 × q, CO-C(CH3)3), 32.0
1
OtBu), 162.6 (d, JC,F = 258.8 Hz, CF=CH2), 173.1 ppm (s, CO-
(q, N-Me), 35.6 (s, CH-C(CH3)3), 40.8 (dd, H2C-CCH3), 58.6 (d,
CO-CH-N), 80.7 (s, CO-C(CH3)3), 81.0 (d, N-CH-N), 112.8 (dd,
H2C=C-CH3), 140.4 (s, H2C=C-CH3), 152.9 (s, CO-OtBu),
172.0 ppm (s, CO-NMe). MS-ES: m/z = 311.3 [M + H]. GC-MS:
NMe). 19F NMR (282.37 MHz, CDCl3) major rotamer: δ = –
94.77 ppm (dddd, JH,F = 7.6, JH,F = 17.3, JH,F = 22.6, JH,F
3
3
3
3
=
49.6 Hz, 1 F, CF=CH2); minor rotamer: δ = –97.98 ppm (dddd,
3JH,F = 8.4, JH,F = 16.9, JH,F = 25.1, JH,F = 50.1 Hz, 1 F,
m/z (%) = 253 (5) [M+ – C4H9], 237 (2), 207 (7), 197 (71) [M+
–
3
3
3
CF=CH2). MS-ES: m/z = 329.2 [M + H]. GC-MS: m/z (%) = 271
C8H18], 179 (35), 167 (2), 153 (67), 134 (25), 127 (33), 110 (44), 94
(6) [M+ – C4H8], 255 (3) [M+ – C4H10O], 215 (84), 195 (2), 171 (82), 84 (76), 69 (94), 57 (94), 41 (100). C17H30N2O3 (310.4): calcd.
(43), 143 (3), 123 (2), 111 (35), 87 (5), 57 (100), 42 (58).
C17H29FN2O3 (328.4): calcd. C 62.17, H 8.90, N 8.53; found: C
62.23, H 8.93, N 8.40.
C 65.77, H 9.74, N 9.02; found: C 65.88, H 9.71, N 8.82.
tert-Butyl (2S,5S)-2-tert-Butyl-3,5-dimethyl-5-(2-methylallyl)-4-
oxoimidazolidine-1-carboxylate (2f): Following general procedure
A, the reaction of 1b (1.0 g, 3.7 mmol) with 2-methallyl chloride
(0.47 g, 5.2 mmol) gave compound 2f as a white crystalline solid
(1.02 g, 85%): m.p. 62 °C (Et2O/pentane). [α]2D0 = –34.4 (c= 1.01,
tert-Butyl (2S,5S)-5-Allyl-2-tert-butyl-3-methyl-4-oxoimidazolidine-
1-carboxylate (2c): Following general procedure A, the reaction of
1a (1.28 g, 5.0 mmol) with allyl bromide (0.85 g, 7.0 mmol) gave
compound 2c as a white crystalline solid (1.39 g, 94%): m.p. 63 °C
(Et2O/pentane). [α]2D0 = +1.2 (c = 1.005, Et2O). The spectral data
agree with those reported previously.[33]
1
Et2O). H NMR (300.14 MHz, CDCl3) major rotamer: δ = 0.99 (3
× s, 9 H, CH-C(CH3)3), 1.51 (3 × s, 9 H, CO-C(CH3)3), 1.52 (s, 3
2
H, C*-Me), 1.62 (s, 3 H, CH2=C-CH3), 2.43 (d, JH,H = 14.4 Hz,
1 H, CH-CH2-CMe), 2.94 (s, 3 H, N-Me), 2.95 (d, 2JH,H = 14.4 Hz,
tert-Butyl (2S,5S)-5-Allyl-2-tert-butyl-3,5-dimethyl-4-oxoimidazo-
lidine-1-carboxylate (2d): Following general procedure A, the
reaction of 1b (1.35 g, 5.0 mmol) with allyl bromide (0.85 g,
7.0 mmol) gave compound 2d as a white crystalline solid (1.4 g,
2
1 H, CH-CH2-CMe), 4.62 (d, JH,H = 10.6 Hz, 1 H, HZC=CMe),
4.79 (d, 2JH,H = 7.2 Hz, 1 H, HEC=CMe), 4.94 ppm (br. s, 1 H, N-
CH-N); minor rotamer: δ = 1.01 (3 × s, 9 H, CH-C(CH3)3), 1.47
(3 × s, 9 H, CO-C(CH3)3), 1.57 (s, 3 H, C*-Me), 1.59 (s, 3 H,
1
90%): m.p. 57 °C (Et2O-pentane). [α]2D0 = –15.2 (c = 1.0, Et2O). H
2
CH2=C-CH3), 2.40 (d, JH,H = 14.4 Hz, 1 H, CH-CH2-CMe), 2.95
NMR(300.14 MHz, CDCl3) major rotamer: δ = 0.97 (3 × s, 9 H,
CH-C(CH3)3), 1.51 (3 × s, 9 H, CO-C(CH3)3), 1.51 (s, 3 H, C*-
(s, 3 H, N-Me), 3.26 (d, 2JH,H = 14.4 Hz, 1 H, CH-CH2-CMe), 4.62
2
2
(d, JH,H = 10.6 Hz, 1 H, HZC=CMe), 4.79 (d, JH,H = 7.2 Hz, 1
H, HEC=CMe), 4.81 ppm (2 × br. s, 1 H, N-CH-N). 13C NMR
(75.48 MHz, CDCl3) major rotamer: δ = 23.7 (q, C*-CH3), 24.9 (q,
CH2-C-CH3), 27.0 (3 × q, CH-C(CH3)3), 28.3 (3 × q, CO-C(CH3)3),
31.5 (q, N-Me), 39.1 (s, CH-CMe3), 44.2 (dd, C-CH2-CMe), 64.3
(s, CO-C*-Me), 80.5 (d, N-CH-N), 80.7 (s, CO-OCMe3), 114.4 (dd,
H2C=CMe), 140.4 (s, H2C=CMe), 154.5 (s, CO-OtBu), 173.3 ppm
(s, CO-NMe);minor rotamer: δ = 23.2 (q, C*-CH3), 24.8 (q, CH2-
C-CH3), 27.3 (3 × q, CH-C(CH3)3), 28.1 (3 × q, CO-C(CH3)3),
31.5 (q, N-Me), 38.6 (s, CH-CMe3), 42.9 (dd, C-CH2-CMe), 64.8
(s, CO-C*-Me), 80.8 (s, CO-OCMe3), 80.9 (d, N-CH-N), 114.84
(dd, H2C=CMe), 140.7 (s, H2C=CMe), 152.7 (s, CO-OtBu),
173.6 ppm (s, CO-NMe). MS-ES: m/z = 325.3 [M + H]. GC-MS:
3
2
Me), 2.48 (dd, JH,H = 7.8, JH,H = 13.9 Hz, 1 H, CH2-CH=CH2),
2.90–3.00 (dd, overlapped, 1 H, CH2-CH=CH2), 2.95 (s, 3 H, N-
Me), 4.96 (br. s, 1 H, N-CH-N), 4.98–5.13 (m, 2 H, CH2-
CH=CH2), 5.26–5.48 ppm (m, 1 H, CH2-CH=CH2); minor rot-
amer: δ = 0.99 (3 × s, 9 H, CH-C(CH3)3), 1.48 (3 × s, 9 H, CO-
3
2
C(CH3)3), 1.57 (s, 3 H, C*-Me), 2.41 (dd, JH,H = 7.8, JH,H
=
13.9 Hz, 1 H, CH2-CH=CH2), 2.97 (2 × s, 3 H, N-Me), 3.26 (dd,
2
3JH,H = 8.4, JH,H = 13.9 Hz, 1 H, CH2-CH=CH2), 4.81 (br. s, 1
H, N-CH-N), 4.98–5.13 (m, 2 H, CH2-CH=CH2), 5.26–5.48 ppm
(m, 1 H, CH2-CH=CH2). 13C NMR (75.48 MHz, CDCl3) major
rotamer: δ = 23.6 (q, C*-CH3), 26.7 (3 × q, CH-C(CH3)3), 28.3 (3
× q, CO-C(CH3)3), 31.4 (q, N-Me), 38.9 (s, CH-C(CH3)3), 42.1 (dd,
CH2-CH=CH2), 65.0 (s, N-C*-Me), 80.6 (d, N-CH-N), 80.7 (s, CO-
C(CH3)3), 119.4 (dd, CH2-CH=CH2), 131.7 (d, CH2-CH=CH2),
155.0 (s, CO-C(CH3)3), 173.6 ppm (s, CO-NMe); minor rotamer: δ
= 23.5 (q, C*-CH3), 27.1 (3 × q, CH-C(CH3)3), 28.1 (3 × q, CO-
C(CH3)3), 31.4 (q, N-Me), 38.6 (s, CH-C(CH3)3), 40.3 (dd, CH2-
m/z (%) = 267 (3) [M+ – C4H9], 251 (1), 223 (1), 211 (64) [M+
C8H18], 193 (27), 167 (42), 151 (23), 112 (83), 108 (28), 98 (24), 82
(24), 69 (35), 57 (98), 41 (100). C18H32N2O3 (324.5): calcd. C 66.63,
H 9.94, N 8.63; found: C 66.37, H 10.04, N 8.60.
–
CH=CH2), 65.5 (s, N-C*-Me), 80.8 (s, CO-C(CH3)3), 81.0 (d, N- General Procedure B: The alkylation product 2 (5.0 mmol), dis-
CH-N), 119.4 (dd, CH2-CH=CH2), 132.2 (d, CH2-CH=CH2),
154.6 (s, CO-C(CH3)3), 173.7 ppm (s, CO-NMe). MS-ES: m/z =
311 [M + H]. GC-MS: m/z (%) = 253 (5) [M+ – C4H9], 197 (78)
[M+ – C8H18], 179 (30), 169 (43), 153 (45), 136 (10), 125 (15), 112
solved in anhydrous MeOH (5.0 mL), was treated with the anhy-
drous HCl/MeOH[44] (10.0 mL) and the mixture was stirred at
room temp. for 1 h. The solvent and excess reagent were removed
under vacuum and the residue was stirred in Et2O. The white pow-
(58), 94 (32), 84 (54), 69 (64), 57 (94), 42 (100). C17H30N2O3 der formed was isolated by filtration and washed with Et2O. The
(310.4): calcd. C 65.77; H 9.74, N 9.02; found: C 65.72; H 9.70, N
8.87.
solid was dried in vacuo and with P2O5 in a desiccator.
(2R,5S)-5-(2-Allyl)-2-tert-butyl-3-methylimidazolidin-4-one Hydro-
chloride (3a): Following general procedure B, starting from alky-
tert-Butyl (2S,5S)-2-tert-Butyl-3-methyl-5-(2-methylallyl)-4-oxoimid- lation product 2a (1.57 g, 5.0 mmol) the HCl salt of 3a was isolated
azolidine-1-carboxylate (2e): Following general procedure A, the re-
action of 1a (1.28 g, 15.0 mmol) with 2-methallyl chloride (0.63 g,
7.0 mmol) gave compound 2e as a white crystalline solid (1.41 g,
as a white powder (0.91 g, quant.): m.p. 130–135 °C (decomposi-
tion, Et2O/MeOH). [α]2D0 = –52.4 (c = 0.965, MeOH). 1H NMR
(300.14 MHz, CD3OD): δ = 1.16 (3 × s, 9 H, CH-C(CH3)3), 2.76–
91%): m.p. 82 °C (Et2O/pentane). [α]2D0 = –16.3 (c = 1.0, Et2O). H
3.12 (m, 2 H, CH-CH2-CF), 3.08 (s, 3 H, N-Me), 4.37 (dd, JH,H
1
2
3
NMR (300.14 MHz, CDCl3): δ = 0.98 (3 × s, 9 H, CH-C(CH3)3),
= 2.1, JH,H = 8.8 Hz, 1 H, CF=CHZ), 4.65–4.90 ppm (m, over-
1.47 (3 × s, 9 H, CO-C(CH3)3), 1.66 (s, 3 H, H2C=CH-CH3), 2.65 lapped for 5 H, CF=CHE, CO-CH-N, N-CH-N, CH-NH-CH). 13
C
(d, 2JH,H = 15.8 Hz, 1 H, CH-CH2-CMe), 3.00 (s, 3 H, N-Me), 3.13
NMR (75.48 MHz, CD3OD): δ = 25.3 (3 × q, CH-C(CH3)3), 32.6
4
2
2
(dd, JH,H = 4.9, JH,H = 15.7 Hz, 1 H, CH-CH2-CMe), 4.12 (dd,
(q, N-Me), 33.2 (ddd, JC,F = 27.9 Hz, CH-CH2-CF), 37.5 (s, CH-
3JH,H = 1.8, JH,H = 3.3 Hz, 1 H, CO-CH-CH2), 4.56 (d, 1 H,
C(CH3)3), 56.0 (d, NH-CH-CO), 82.7 (d, NH-CH-NMe), 95.5
3
MeC=CHZ), 4.78 (d, 1 H, MeC=CHE), 4.94 ppm (br. s, 1 H, N-
(ddd, 2JC,F = 18.0 Hz, CF=CH2), 161.4 (d, 1JC,F = 256.8 Hz, CH2-
Eur. J. Org. Chem. 2005, 719–727
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
723