Page 9 of 10
Communication
Organic & Biomolecular Chemistry
DOI: 10.1039/C7OB00536A
Organic & Biomolecular Chemistry
6 27
,
oxytocin (
1),
a 9-mer peptide with one disulfide bond. We Instrument Center for spectroscopic support and Shimadzu for
synthesized carboxy-oxytocin to facilitate analysis of the a grant supporting the mass spectrometer. This manuscript is
th
disulfide forming reaction. Fully protected peptide 25 was dedicated to Prof. Samuel J. Danishefsky in honor of his 80
assembled by Fmoc-SPPS on a TGT-linked ChemMatrix resin birthday (March 2016).
(
Scheme 5A). Under the optimized IAPP1-9 conditions, ~80%
conversion was observed after 6 h. Increased Pd(OAc)
loadings (3.0 equiv) facilitated complete conversion of peptide
to protected carboxy-oxytocin (27). The resulting folded
2
Notes and references
25
peptide was cleaved from the resin, the side chain protecting
1
2
(a) M. G. Benitez, J. T. Puche, F. Albericio, Chem. Rev., 2014,
14, 901–926; (b) H. E. Swaisgood, Biotechnol. Adv., 2005, 23,
71–73.
(a) B. M. Olivera, J. Biol. Chem., 2006, 281, 31173–31177; (b) H.
Terlau, B. M. Olivera, Physiol. Rev., 2004, 84, 41–68; (c) A.
Rojas, A. Feregrino, C. Ibarra-Alvarado, M. B. Aguilar, A. Falcón,
E. Heimer de la Cotera, Venom. Anim. Toxins incl. Trop. Dis.,
groups were removed, and it was purified by RP-HPLC (Scheme
2
1
1
5B
) to afford carboxy-oxytocin (27) in 32% isolated yield.
Conclusions
In summary, we present a novel Pd-mediated method to form
disulfides on resin that proceeds directly from the protected
peptide without loss of any acid-labile side chain protecting
groups. This approach avoids the intermediacy of the reduced
peptide, avoids solution-phase manipulations of the peptide,
and minimizes the number of HPLC purifications needed to
access the desired peptide. The reaction employs bench-stable
reagents and requires no special equipment. No trace Pd or S-
allylated products are observed. We have demonstrated the
utility of this method in the solid phase synthesis and on-resin
folding of the carboxy-terminated analog of the
neurotransmitter oxytocin. Meanwhile, we anticipate that this
method will be of broad utility in the synthesis of more
complex multi-disulfide targets. Efforts to employ this reaction
in such contexts are actively being pursued in our laboratory.
Detailed investigations into the mechanistic nuances of this
chemistry are ongoing and will be reported in due course.
2
008, 14, 497–513.
(a) K. Fosgerau, T. Hoffman, Drug Disc. Today, 2015, 20, 122–
28; (b) T. Uhlig, T. Kyprianou, F. G. Martinelli, C. A. Oppici, D.
3
1
Heiligers, D. Hills, X. R. Calvo, P. Verhaert, EuPA Open
Proteom., 2014, 4, 58–69; (c) P. Vlieghe, V. Lisowski, J.
Martinez, M. Khrestchatisky, Drug Disc. Today, 2010, 15, 40–
56; (d) A. A. Kaspar, J. M. Reichert, Drug Disc. Today, 2013, 18,
8
07–817.
4
5
6
A. K. Sato, M. Viswanathan, R. B. Kent, C. R. Wood, Curr. Opin.
Biotechnol., 2006, 17, 638–642.
E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem., 2014, 57,
2
832–2842.
(a) M. Muttenthaler, A. Andersson, A. D. de Araujo, Z. Dekan,
R. J. Lewis, P. F. Alewood, J. Med. Chem., 2010, 53, 8585–8596;
(
1
b) T. Wang, S. J. Danishefsky, J. Am. Chem. Soc., 2012, 134,
3244−13247.
7
8
9
(a) G. Gimpl, F. Fahrenholz, Physiol. Rev., 2001, 81, 629–683.
(b) H. H. Zingg, S. A. Laporte, Trends. Endocrinol. Metabol.
2
R. A. Janknegt, M. M. Zweers, K. P. J. Delaere, A. G. Kloet, S. G.
S. Khoe, H. J. Arendsen, J. Urol. (Baltimore) 1997, 157, 513–
003, 14, 222–227.
Acknowledgements
5
17.
The authors would like to thank the National Institutes of
Health (R00-GM097095) and Wayne State University for
generous financial support (startup funds to JLS, Rumble-
(a) M. Gozzi, E. M. Dashow, A. Thurm, S. E. Swedo, C. F. Zink,
Neuropsychopharm., 2016, 1–11; (b) Z. R. Donaldson, L. J.
Young, Science 2008, 322, 900–904.
Schaap Fellowship to TDK, Knoller Fellowship to HYS). We also 10 (a) F. Roelfsema, N. R. Biermasz, A. M. Pereira, J. A. Romijn,
gratefully acknowledge the staff of the WSU Lumigen
Biologics: Targets & Therapy, 2008, 3, 463–479; (b) S. Manjila,
O. C. Wu, F. R. Khan, M. M. Khan, B. M. Arafah, W. R. Selman,
Neurosurg. Focus., 2010, 4, E14.
1
1
1
2
A. S. Galanis, F. Albericio, M. Grøtli, Pept. Sci., 2009, 92, 23–34.
(a) T. M. Postma, F. Albericio, Eur. J. Org. Chem., 2014, 3519–
3
2
530; (b) A. Cuthbertson, B. Indrevoll, Org. Lett. 2003, 5, 2955–
957; (c) M. Mochizuki, S. Tsuda, K. Tanimura, Y. Nishiuchi,
Org. Lett., 2015, 17, 2202–2205; (d) E. Calce, R. M. Vitale, A.
Scaloni, P. Amodeo, S. De Luca, Amino Acids, 2015, 47, 1507–
1
515.
1
1
1
3
4
5
(a) N. Kotzur, B. T. Briand, M. Beyermann, V. Hagen, J. Am.
Chem. Soc., 2009, 131, 16927–16931; (b) M. Góngora-Benítez,
J. Tulla-Puche, M. Paradís-Bas, O. Werbitzky, M. Giraud, F.
Albericio, Pept. Sci., 2011, 96, 69–80.
D. Andreu, F. Albericio, N. A. Sole, M. C. Munson, M. Ferrer,
G. Barany, Methods in Molecular Biology: Peptide Synthesis
Protocols (Eds.: M. W. Pennington, B. M. Dunn), Humana
Press, Inc., Totowa, NJ, 1994, vol. 45, p. 91–169.
J. Eichler, R. A. Houghten, Protein Pept. Lett., 1997, 4, 157–164.
4
| Org. Biomol. Chem, 2017, 00, 1-3
This journal is © The Royal Society of Chemistry 2017