C O M M U N I C A T I O N S
controlled by the wavelength of light used. Future work will concern
the synthesis of substituted analogues of 2 and in-depth studies
profiling their selectivity, receptor desensitization, and utility in
neuronal excitation. Ideally, these photochromic agonists will
become a valuable complement to irreversibly caged neurotrans-
mitters as well as other methods of remote neuronal control.20-22
Acknowledgment. This work was supported by grants from
the National Institutes of Health, the Human Frontier Science
Program, Lawrence Berkeley National Laboratory, the Coates
Microscopy fund, predoctoral fellowships from Wyeth Research
and the ACS Medicinal Chemistry Division (M.V.) and the National
Science Foundation (S.S.), and postdoctoral fellowships from the
Human Frontier Science Program and the Nanotechnology Program
of the Generalitat de Catalunya (P.G.). The iGluR2(Q)flip-L483Y,
iGluR5(Q), and iGluR6(Q) cDNAs were kind gifts of Kathy Partin.
Figure 1. Whole-cell voltage clamp recording of iGluR6(Q) currents in
HEK293 cells under UV-visible illumination.
Supporting Information Available: Detailed synthetic protocols,
relevant spectroscopic data, methods of receptor transfection, electro-
physiological recordings, and illumination protocols. This material is
References
(1) Gillespie, D. C.; Kim, G.; Kandler, K. In Dynamic Studies in Biology,
1st ed.; Goeldner, M., Givens, R., Eds.; Wiley-VCH: Weinheim, Germany,
2005; pp 232-251.
Figure 2. Dose-response curves for inward currents evoked by 2 at iGluR5
and iGluR6 expressing HEK293 cells under 380 and 500 nm illumination.
(2) Callaway, E. M.; Yuste, R. Curr. Opin. Neurobiol. 2002, 12 (5), 587-
592.
(3) Hess, G. P. In Dynamic Studies in Biology, 1st ed.; Goeldner, M., Givens,
R., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp 232-251.
(4) Mayer, M. L. Nature 2006, 440 (7083), 456-462.
(5) Kaufman, H.; Vratsanos, S. M.; Erlanger, B. F. Science 1968, 162 (861),
1487-1489.
(6) Bartels, E.; Wasserman, N. H.; Erlanger, B. F. Proc. Natl. Acad. Sci. U.S.A.
1971, 68 (8), 1820-1823.
(7) Fujita, D.; Murai, M.; Nishioka, T.; Miyoshi, H. Biochemistry 2006, 45
(21), 6581-6586.
(8) Caamano, A. M.; Vazquez, M. E.; Martinez-Costas, J.; Castedo, L.;
Mascarenas, J. L. Angew. Chem., Int. Ed. 2000, 39 (17), 3104-3107.
(9) Mayer, G.; Heckel, A. Angew. Chem., Int. Ed. 2006, 45 (30), 4900-
4921.
Figure 3. Whole-cell current clamp recording of cultured rat hippocampal
neurons in the presence of 25 µM 2 under 380 and 500 nm illumination.
(10) Givens, R. S.; Weber, J. F. W.; Jung, A. H.; Park, C. In Methods in
Enzymology; Marriott, G., Ed.; Academic Press: New York, 1998; Vol.
291, pp 1-29.
(4.8 mW/mm2 at 500 nm and 1.8 mW/mm2 at 380 nm) several
orders of magnitude weaker than laser pulse-photolysis techniques.
Much faster rates of isomerization are expected at comparable light
intensities.18
(11) Volgraf, M.; Gorostiza, P.; Numano, R.; Kramer, R. H.; Isacoff, E. Y.;
Trauner, D. Nat. Chem. Biol. 2006, 2 (1), 47-52.
(12) Pedregal, C.; Collado, I.; Escribano, A.; Ezquerra, J.; Dominguez, C.;
Mateo, A. I.; Rubio, A.; Baker, S. R.; Goldsworthy, J.; Kamboj, R. K.;
Ballyk, B. A.; Hoo, K.; Bleakman, D. J. Med. Chem. 2000, 43 (10), 1958-
1968.
We tested the ability of 2 to depolarize cultured rat hippocampal
neurons, which are known to express the KAR subunits iGluR6
and KA2, but not iGluR5.19 Neurons were exposed to a 25 µM
concentration of 2 under 380 nm light and current clamped at -65
mV, without pretreatment with ConA. Switching wavelengths
between 380 and 500 nm light was then sufficient to trigger, and
extinguish, sustained trains of action potentials (Figure 3). While
iGluR6 channels are only activated to a small extent at 25 µM
(Figure 2), this can still produce significant depolarization. Given
the large number of receptors in the cell, only a small fraction needs
to be concurrently activated by glutamate release to trigger neuronal
firing.
(13) Tait, K. M.; Parkinson, J. A.; Bates, S. P.; Ebenezer, W. J.; Jones, A. C.
J. Photochem. Photobiol. A 2003, 154 (2-3), 179-188.
(14) Kohler, M.; Burnashev, N.; Sakmann, B.; Seeburg, P. H. Neuron 1993,
10 (3), 491-500.
(15) Partin, K. M.; Patneau, D. K.; Winters, C. A.; Mayer, M. L.; Buonanno,
A. Neuron 1993, 11 (6), 1069-1082.
(16) Honore, T.; Davies, S. N.; Drejer, J.; Fletcher, E. J.; Jacobsen, P.; Lodge,
D.; Nielsen, F. E. Science 1988, 241 (4866), 701-703.
(17) Ramesh, D.; Wieboldt, L. N.; Carpenter, B. K.; Hess, G. P. Proc. Natl.
Acad. Sci. U.S.A. 1993, 90 (23), 11074-11078.
(18) Chen, E.; Kumita, J. R.; Woolley, G. A.; Kliger, D. S. J. Am. Chem. Soc.
2003, 125 (41), 12443-12449.
(19) Janssens, N.; Lesage, A. S. J. J. Neurochem. 2001, 77 (6), 1457-1474.
(20) Banghart, M.; Borges, K.; Isacoff, E. Y.; Trauner, D.; Kramer, R. H. Nat.
Neurosci. 2004, 7 (12), 1381-1386.
Taken together, these results describe a simple approach for
obtaining remote control of iGluR activity and neuronal firing with
a photochromic agonist. The active agonist is subtype-specific,
possesses good efficacy and affinity, and can be conveniently
(21) Boyden, E. S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Nat.
Neurosci. 2005, 8 (9), 1263-1268.
(22) Lima, S. Q.; Miesenbock, G. Cell 2005, 121 (1), 141-152.
JA067269O
9
J. AM. CHEM. SOC. VOL. 129, NO. 2, 2007 261