J . Org. Chem. 2000, 65, 1857-1864
1857
Syn th esis, Electr och em istr y, a n d In ter a ction s w ith â-Cyclod extr in
of Den d r im er s Con ta in in g a Sin gle F er r ocen e Su bu n it Loca ted
“Off-Cen ter ”
Claudia M. Cardona,† Tracy Donovan McCarley,‡ and Angel E. Kaifer*,†
Center for Supramolecular Science and Department of Chemistry, University of Miami,
Coral Gables, Florida 33124-0431, and Choppin Laboratories of Chemistry, Louisiana State University,
Baton Rouge, Louisiana 70803-1804
Received December 28, 1999
Two series of dendrimers containing a single ferrocene unit located in the focal point of these
macromolecules have been synthesized and characterized. The first series of dendrimers has
considerable lipophilic character, with tert-butyl ester groups located in their peripheral regions.
In contrast, the second series of dendrimers was obtained by the hydrolysis of these peripheral
ester groups, yielding water-soluble dendrimers with carboxylic acid groups in their surfaces. The
electrochemical properties of these macromolecules were strongly affected by the dendritic groups
attached to the ferrocene subunits. Host-guest interactions between the water-soluble dendrimers
and the well-known receptor â-cyclodextrin were also investigated. The dendritic groups were found
to hamper markedly the formation of inclusion complexes between the cyclodextrin receptor and
the dendrimer’s ferrocene unit.
In tr od u ction
groups are usually located at3 or very near3b the center
of the dendrimer. In some cases, more than one inner
redox group is incorporated inside the dendrimer,3g,n but
in such a way that the structure maintains its overall
branching symmetry.
The covalent incorporation of redox-active groups into
dendrimers1 is a very active area of chemical research.
Numerous reports on dendrimers functionalized with
peripheral2 or core3 redox groups have been published
in the past few years. All these reports focus on es-
sentially symmetric macromolecular structures. For in-
stance, peripheral redox groups are normally attached
to every branch2 of the dendrimer structure. Core redox
The molecular weight and size of dendrimers has
elicited comparisons to proteins.3i Therefore, redox-active
dendrimers may be measured up, at least formally, to
redox proteins. The former have a clear advantage over
the latter; that is, dendrimers are robust molecules that
do not denature, unlike proteins, in response to certain
environmental conditions. On the other hand, although
some heme-containing dendrimers exhibit oxygen and
carbon monoxide binding affinities that compare favor-
ably to those of hemoglobin and myoglobin,4 many redox
proteins have properties that current dendrimers do not
match, such as directional reactivity and selectivity in
their electron-transfer reactions.5 We reasoned that these
* To whom correspondence should be addressed. Tel: (305) 284-
3468. Fax: (305) 444-1777 (preferred) or (305) 284-4571. E-mail:
akaifer@umiami.ir.miami.edu.
† University of Miami.
‡ Louisiana State University.
(1) For recent reviews on the fast developing chemistry of dendrim-
ers, see: (a) Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681.
(b) Fischer, M.; Vo¨gtle, F. Angew. Chem., Int. Ed. Engl. 1999, 38, 884.
(c) Bosman, A. W.; J anssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99,
1665. (d) Newkome, G. R.; He, E.; Moorefield, C. N. Chem. Rev. 1999,
99, 1689.
(2) (a) Moulines, F.; Djakovitch, L.; Boese, R.; Glaguen, B.; Thiel,
W.; Fillaut, J .-L.; Delville, M.-H.; Astruc, D. Angew. Chem., Int. Ed.
Engl. 1993, 32, 1075. (b) Alonso, B.; Cuadrado, I.; Mora´n, M.; Losada,
J . J . Chem. Soc., Chem. Commun. 1994, 2575. (c) Bryce, M. R.;
Devonport, W.; Moore, A. J . Angew. Chem., Int. Ed. Engl. 1994, 33,
1761. (d) Fillaut, J .-L.; Linares, J .; Astruc, D. Angew. Chem., Int. Ed.
Engl. 1994, 33, 2460. (e) Alonso, B.; Mora´n, M.; Casado, C. M.; Lobete,
F.; Losada, J .: Cuadrado, I. Chem. Mater. 1995, 7, 1440. (f) Cuadrado,
I.; Mora´n, M.; Casado, C. M.; Alonso, B.; Lobete, F.; Garc´ıa, B.; Ibisate,
M.; Losada, J . Organometallics 1996, 15, 5278. (g) Lange, P.; Schier,
A.; Schmidbaur, H. Inorg. Chem. 1996, 35, 637. (h) Haga, M.-A.; Ali,
M.-M.; Arakawa, R. Angew. Chem., Int., Ed. Engl. 1996, 35, 76. (i)
Valerio, C.; Fillaut, J .-L.; Ruiz, J .; Guittard, J .; Blais, J .-C.; Astruc, D.
J . Am. Chem. Soc. 1997, 119, 2588. (j) Cuadrado, I.; Casado, C. M.;
Alonso, B.; Mora´n, M.; Losada, J .; Belsky, V. J . Am. Chem. Soc. 1997,
119, 7613. (k) Bodige, S.; Torres, A. S.; Maloney, D. J .; Tate, D.; Kinsel,
G. R.; Walker, A. K.; MacDonnell, F. M. J . Am. Chem. Soc. 1997, 119,
10364. (l) Takada, K.; D´ıaz, D. J .; Abrun˜a, H. D.; Cuadrado, I.; Casado,
C. M.; Alonso, B.; Mora´n, M.; Losada, J J . Am. Chem. Soc. 1997, 119,
10763. (m) Serroni, S.; J uris, A.; Venturi, M.; Campagna, S.; Resino,
R. I.; Denti, G.; Credi, A.; Balzani, V. J . Mater. Chem. 1997, 7, 1227.
(n) Newkome, G. R.; He, E. J . Mater. Chem. 1997, 7, 1237. (o) Wang,
C.; Bryce, A.; Batsanov, A. S.; Goldenberg, L. M.; Howard, J . A. K. J .
Mater. Chem. 1997, 7, 11189. (p) Gonza´lez, B.; Casado, C. M.; Alonso,
B.; Cuadrado, I.; Mora´n, M.; Wang, Y.; Kaifer, A. E. Chem. Commun.
1998, 2569. (q) Storrier, G.; Takada, K.; Abrun˜a, H. D. Langmuir 1999,
15, 872.
(3) (a) Dandliker, P. J .; Diederich, F.; Gross, M.; Knobler, C. B.;
Louati, A.; Sadford, E. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1739.
(b) Newkome, G. R.; Guther, R.; Moorefield, C. N.; Cardullo, F.;
Echegoyen, L.; Perez-Cordero, E.; Luftmann, H. Angew. Chem., Int.,
Ed. Engl. 1995, 34, 2023. (c) Dandliker, P. J .; Diederich, F.; Gissel-
brecht, J .-P.; Louati, A.; Gross, M. Angew. Chem., Int. Ed. Engl. 1995,
34, 2725. (d) Chow, H.-F.; Chan, I. Y.-K.; Chan, D. T. W.; Kwok, R. W.
M. Chem. Eur. J . 1996, 2, 1085. (e) Sadamoto, R.; Tomioka, N.; Aida,
T. J . Am. Chem. Soc. 1996, 118, 3978. (f) Bhyrappa, P.; Young, J . K.;
Moore, J . S.; Suslick, K. S. J . Am. Chem. Soc. 1996, 118, 5708. (g)
Narayanan, V. V.; Newkome, G. R.; Echegoyen, L. A.; Pe´rez-Cordero,
E. Polymer Prepints 1996, 37, 419. (h) Gorman, C. B.; Parkhurst, B.
L.; Su, W. Y.; Chen, K.-Y. J . Am. Chem. Soc. 1997, 119, 1141. (i)
Dandliker, P. J .; Diederich, F.; Zingg, A.; Gisselbrecht, J . P.; Gross,
M.; Louati, A.; Sanford, E. Helv. Chim. Acta 1997, 80, 173. (j) Balzani,
V.; Campagna, S.; Denti, G.; J uris, A.; Serroni, S.; Venturi, M. Acc.
Chem. Res. 1998, 31, 26. (k) Selby, T. D.; Blacstock, S. C. J . Am. Chem.
Soc. 1998, 120, 12155. (l) Pollak, K. W.; Leon, J . W.; Fre´chet, J . M. J .;
Maskus, M.; Abrun˜a, H. D. Chem. Mater. 1998, 10, 30. (m) Vo¨gtle, F.;
Plevoets, M.; Nieger, M.; Azzellini, G. C.; Credi, A.; De Cola, L.; De
Marchis, V.; Venturi, M.; Balzani, V. J . Am. Chem. Soc. 1999, 121,
6290. (n) Newkome, G. R.; Patri, A. K.; God´ınez, L. A. Chem. Eur. J .
1999, 5, 1445. (o) Gorman, C. B.; Smith, J . C.; Hager, M. W.; Parkhurst,
B. L.; Sierzputowska-Gracz, H.; Haney, C. A. J . Am. Chem. Soc. 1999,
121, 9958.
(4) Collman, J . P.; Fu, L.; Zingg, A.; Diederich, F. Chem. Commun.
1997, 193.
10.1021/jo991973o CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/02/2000