H. Wen et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2123–2125
2125
were attached to the structure of 1, respectively, the
References and notes
AChE inhibitory values were almost same as that of 1.
Fourth, both of 4b (IC50 = 0.19 lM) and 4i
(IC50 = 0.28 lM) showed higher AChE inhibitory values
than galanthamine (IC50 = 0.55 lM). Lastly, all of the
tested compounds showed poor inhibition to butyrylch-
olinesterase (BuChE). Especially for compounds 4b and
4i, they all demonstrated a high selectivity, respectively,
for AChE inhibitory activity over BuChE, 4b (selectivi-
ty, >1000) and 4i (selectivity, 121.21), whereas the selec-
tivity value of galanthamine is only 27.70. Therefore, the
remarkable selectivity feature of compounds 4b and 4i
might shed light on the future design and preparation
of AChE inhibitors. However, the reason why 4b and
4i showed a better inhibitory activity and selectivity than
the other synthesized compounds is not clear, which will
be further studied in the future in our laboratory.
1. Bartus, R. T.; Dean, R. L.; Beer, B.; Lippa, A. S. Science
1982, 217, 408.
2. Bowen, D. M.; Francis, P. T.; Pangalos, M. N.; Stephens,
P. H.; Procter, A. W. Lancet 1992, 339, 132.
3. Berman, H. A.; Decker, M. M. Biochim. Biophys. Acta
1986, 872, 125.
4. Berman, H. A.; Leonard, K. Mol. Pharmacol. 1992, 41,
412.
5. Carreiras, M. C.; Marco, J. L. Curr. Pharm. Des. 2004, 10,
3167.
6. Markesbery, W. R. Free Radic. Bio. Med. 1997, 23,
134.
7. Eran, N.; Yasmine, H. A.; Camille, S.; Iris, L.; Talma, B.
Neuropharmacology 2006, 50, 540.
8. Gulberk, U.; Nesrin, G.; Algul, Y.; Altan, B. A. Neurosci.
Lett. 2005, 382, 327.
9. Choudhary, M. I.; Nawaz, A. A.; Haq, Z. U.; Azim, M.
K.; Ghayur, M. N.; Lodhi, M. A.; Jalil, S.; Khalid, A.;
Ahmed, A.; Rode, B. M.; Rahman, A. U.; Gilani, A. H.
Biochem. Biophys. Res. Commun. 2005, 332, 1171.
10. Tang, W.; Eisenbrand, G. Chinese Drugs of Plant Origin;
Springer-Verlag: Berlin, Heidelberg, 1992, 545.
11. Hayashi, J.; Sekine, T.; Deguchi, S.; Lin, Q.; Horie, S.;
Tsuchiya, S.; Yano, S.; Watanabe, K.; Ikegami, F.
Phytochemistry 2002, 59, 513.
12. Kim, H. J.; Moon, K. D.; Lee, D. S.; Lee, S. H.
J. Ethnopharmacol. 2003, 84, 95.
13. Ha, J. H.; Lee, D. U.; Lee, J. T.; Kim, J. S.; Yong, C. S.;
Kim, J. A.; Ha, J. S.; Huh, K. J. Ethnopharmacol. 2000,
73, 329.
In conclusion, methyl 2-(2-(4-formylphenoxy)acetami-
do)-2-substituted acetate derivatives represented a new
class of highly active and selective AChE inhibitors,
which indicated that the modification based on the
structure of 1 is a practical approach to increase its
AChE inhibitory activities. Among all the tested com-
pounds, 4b and 4i showed significant AChE inhibitory
activities (IC50 = 0.19 lM, 0.28 lM) and a high selectiv-
ity over BuChE (>1000, 121.21), and thus they may be
applied for potent AChE inhibitors. Further efforts aim-
ing at developing potent AChE inhibitors based on
modification of 1 would be continued in our laboratory
and the research results will be reported in due course.
14. Ha, J. H.; Shin, S. M.; Lee, S. K.; Kim, J. S.; Shin, U. S.;
Huh, K.; Kim, J. A.; Yong, C. S.; Lee, N. J.; Lee, D. U.
Planta Med. 2001, 67, 877.
15. (a) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.;
Goldman, A.; Toker, L.; Silman, I. Science 1991, 253, 872;
(b) Harel, M.; Schalk, I.; Ehest, S. L.; Bouet, I.; Goeldner,
M.; Hirth, C.; Axelsen, P. H.; Silman, I.; Sussman, J. L.
Proc. Natl. Acad. Sci. U.S.A. 1993, V90, 9031 (PDB ID:
1ACL).
Acknowledgment
This work was supported by the Natural Science
Guangdong
Foundation
(2004B30101007).
of
Province,
China
16. Jose, T. F.; Leticia, M. C.; Michel, E. F. Bioorg. Med.
Chem. Lett. 2003, 13, 1825.
17. Cheng, M. F.; Fang, J. M. J. Comb. Chem. 2004, 6, 99.
18. Ellman, G. L.; Courtney, K. D.; Andress, V.; Earther-
stone, F. M. Biochem. Pharmacol. 1961, 7, 88.
19. Greenblatt, H. M.; Guillou, C.; Guenard, D.; Argman, A.;
Botti, S.; Badet, B.; Thal, C.; Silman, I.; Sussman, J. L.
J. Am. Chem. Soc. 2004, 126, 15405.
Supplementary data
Supplementary data associated with this article can be