A.A. Dabbawala et al. / Applied Catalysis A: General 419–420 (2012) 185–193
193
around metal center decreases thereby increases the reaction rate
References
due to facile CO dissociation and easily alkene association.
In view of above, the vinyl acetate hydroformylation has some
discrete features: (i) vinyl acetate is less reactive to the hydro-
formylation compared to terminal alkenes, (ii) the regioselectivity
of the vinyl acetate hydroformylation is contradictory to that of
non-functionalized linear olefins, the branched aldehyde predom-
inates, and (iii) the reaction rate, regioselectivity and formation
of side products depend distinctly on steric and electric nature
of ligands used. The less reactivity, reversed regioselectivity,
and formation of side products were attributed probably to the
double bond polarization due to the inductive effect of the ester
carbonyl group and chelating effect of the vinyl ester carbonyl
group to metal center. The ester carbonyl group influences the
intermediates stability during hydroformylation by the formation
of thermodynamically stable five and/or six membered rings
through coordination to the rhodium (Fig. 5, species E and E2) and
can slow down carbon monoxide insertion and responsible for the
less hydroformylation reactivity of vinyl acetate and formation of
side products. Consequently, the initial rate of hydroformylation of
vinyl acetate using rhodium complex modified by bulky P(ONp)3
ligand (at 80 ◦C, 3.0 MPa syngas pressure) for vinyl acetate hydro-
formylation) was ∼16 times slower than initial rate of 1-hexene
hydroformylation [28].
[1] C.D. Frohning, C.W. Kohlpaintner, Applied homogeneous catalysis with
organometallic compounds, in: B. Cornils, W.A. Herrmann (Eds.), A Compre-
hensive Handbook in Two Volumes, vol. 1, Wiley-VCH, Weinheim, 1996, pp.
27–104.
[2] P.W.N.M. Van Leeuwen, C. Claver, Rhodium catalyzed hydroformylation,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[3] A.A. Dabbawala, D.U. Parmar, H.C. Bajaj, R.V. Jasra, J. Mol. Catal. A: Chem. 282
(2008) 99–106.
[4] B. Breit, Top. Curr. Chem. 279 (2007) 139–172.
[5] F. Ungvary, Coord. Chem. Rev. 251 (2007) 2087–2102.
[6] A.A. Dabbawala, J.N. Parmar, R.V. Jasra, H.C. Bajaj, E. Monflier, Catal. Commun.
10 (2009) 1808–1812.
[7] J.A. Moulijn, P.W.N.W. van Leeuwen, R.A. van Santen, Stud. Surf. Sci. Catal. 79
(1993) 201–216.
[8] A.A. Kaisare, S.B. Owens Jr., E.J. Valente, G.M. Gray, J. Organomet. Chem. 695
(2010) 1472–1479.
[9] A.A. Kaisare, S.B. Owens Jr., E.J. Valente, G.M. Gray, J. Organomet. Chem. 695
(2010) 2658–2666.
[10] A.M. Trzeciak, T. Głowiak, R. Grzybek, J.J. Ziółkowski, J. Chem. Soc., Dalton Trans.
(1997) 1831–1837.
[11] W. Gil, A.M. Trzeciak, J.J. Ziółkowski, Organometallics 27 (2008) 4131–4138.
[12] L.A. van der Veen, P.H. Keeven, G.C. Schoemaker, J.N.H. Reek, P.C.J. Kamer,
P.W.N.M. van Leeuwen, M. Lutz, A.L. Spek, Organometallics 19 (2000) 872–883.
[13] H. Klein, R. Jackstell, K.-D. Wiese, C. Borgmann, M. Beller, Angew. Chem. 113
(2001) 3505–3508.
[14] Y. Yan, X. Zhang, X. Zhang, J. Am. Chem. Soc. 128 (2006) 16058–16061.
[15] S. Yu, Y. Chie, X. Zhang, Adv. Synth. Catal. 351 (2009) 537–540.
[16] C.J. Cobley, K. Gardner, J. Klosin, C. Praquin, C. Hill, G.T. Whiteker, A. Zanotti-
Gerosa, J. Org. Chem. 69 (2004) 4031–4040.
[17] K.N. Bhatt, S.B. Halligudi, J. Mol. Catal. 91 (1994) 187–194.
[18] O. Saidi, J. Ruan, D. Vinci, X. Wu, J. Xiao, Tetrahedron Lett. 49 (2008) 3516–3519.
[19] S. Breeden, D.J. Cole-Hamilton, D.F. Foster, G.J. Schwarz, M. Wills, Angew. Chem.
Int. Ed. 39 (2000) 4106–4108.
5. Conclusions
[20] C.K. Brown, G. Wilkinson, J. Chem. Soc. A (1970) 2753–2763.
[21] B. Fell, M. Barl, J. Mol. Catal. 2 (1977) 301–306.
The naphthyl-based monodentate bulky phosphine and phos-
phite ligands were evaluated in rhodium catalyzed hydroformy-
lation of vinyl acetate. The reaction rate activity and selectivity
(chemo- as well as regio-) depend conspicuously on steric and
electronic nature of ligands. The ligand PNp3 having high steric
nature than PPh3 and offered high regioselectivity toward branched
aldehyde with low activity and low chemo selectivity toward alde-
hyde. While an excellent regioselectivity to branched aldehyde
and high selectivity to aldehyde with high TOF were realized with
monodentate bulky phosphite ligands having -acceptor ability
with comparative more steric nature. Among the naphthyl-based
bulky phosphite ligands, P(ONp)3 afforded notable catalytic activ-
ity. The observed TOF is 3.6 times higher than those observed for
the Rh/PPh3 catalyst. Moreover, the viability and beneficial effect
of organic carbonate as ‘green’ solvent in hydroformylation of vinyl
acetate catalyzed by Rh/bulky phosphites were also investigated.
The substantial advantages of organic carbonates were found com-
pared to the conventional organic solvents and also allow the
recycling of the catalyst.
[22] M. Matsumoto, M. Tamura, J. Mol. Catal. 16 (1982) 195–207.
[23] A.G. Abatjoglou, D.R. Bryant, L.C. D’Esposito, J. Mol. Catal. 18 (1983) 381–390.
[24] A.M. Trzeciak, J.J. Ziółkowski, J. Mol. Catal. 43 (1987) 15–20.
[25] Y.L. Borole, R.V. Chaudhari, Ind. Eng. Chem. Res. 44 (2005) 9601–9608.
[26] P.J. Thomas, A.T. Axtell, J. Klosin, W. Peng, C.L. Rand, T.P. Clark, C.R. Landis, K.A.
Abboud, Org. Lett. 9 (2007) 2665–2668.
[27] D.B.G. Williams, M. Ajam, A. Ranwell, Organometallics 26 (2007) 4692–4695.
[28] A.A. Dabbawala, H.C. Bajaj, R.V. Jasra, J. Mol. Catal. A: Chem. 302 (2009) 97–106.
[29] A.A. Dabbawala, R.V. Jasra, H.C. Bajaj, Catal. Commun. 11 (2010) 616–619.
[30] A.A. Dabbawala, R.V. Jasra, H.C. Bajaj, Catal. Commun. 12 (2011) 403–407.
[31] H. Riihimaki, T. Kangas, P. Suomalainen, H.K. Reinius, S. Jaaskelainen, M.
Haukka, A.O.I. Krause, T.A. Pakkanen, J.T. Pursiainen, J. Mol. Catal. A: Chem.
200 (2003) 81–94.
[32] R.M. Deshpande, R.V. Chaudhari, J. Mol. Catal. 57 (1989) 177–191.
[33] T. Welton, Chem. Rev. 99 (1999) 2071–2083.
[34] P. Wasserscheid, W. Keim, Angew. Chem. Int. Ed. 39 (2000) 3772–3789.
[35] R. Sheldon, Chem. Commun. (2001) 2399–2407.
[36] J. Bayardon, J. Holz, B. Schäffner, V. Andrushko, S. Verevkin, A. Preetz, A. Börner,
Angew. Chem. Int. Ed. 46 (2007) 5971–5974.
[37] B. Schäffner, J. Holz, S.P. Verevkin, A. Börner, ChemsusChem 1 (2008) 249–253.
[38] B. Schäffner, V. Andrushko, J. Holz, S.P. Verevkin, A. Börner, ChemsusChem 1
(2008) 934–940.
[39] B. Schäffner, V. Andrushko, J. Bayardon, J. Holz, A. Börner, Chirality 21 (2009)
857–861.
[40] C. Torborg, A. Zapf, M. Beller, ChemsusChem 1 (2008) 91–96.
[41] A. Van Rooy, E.N. Orij, P.C.J. Kamer, P.W.N.M. Van Leeuwen, Organometallics 14
(1995) 34–43.
Acknowledgments
[42] A. Van Rooy, J.N.H. de Bruijn, K.F. Roobeek, P.C.J. Kamer, P.W.N.M. Van Leeuwen,
J. Organomet. Chem. 507 (1996) 69–73.
[43] P.W.N.M. Van Leeuwen, C.F. Roobeek, J. Organomet. Chem. 258 (1983) 343–350.
[44] A. Van Rooy, E.N. Orij, P.C.J. Kamer, F. Van Den Aardweg, P.W.N.M. Van Leeuwen,
J. Chem. Soc., Chem. Commun. 16 (1991) 1067–1096.
Authors are thankful to analytical section of the institute for
assistance with analyses and CSIR and DST for financial support
under CSIR Network Programme NWP 010 and SR/S1/OC-56/2009.
AAD thanks CSIR, New Delhi, for the award of Senior Research Fel-
lowship.
[45] T. Jongsma, G. Challa, P.W.N.M. Van Leeuwan, J. Organomet. Chem. 421 (1991)
121–128.